Как поменять синус на косинус в тригонометрическом уравнении

Формулы приведения. Как быстро получить любую формулу приведения

Формулы приведения разработаны для углов, представленных в одном из следующих видов: \(\frac<\pi><2>+a\), \(\frac<\pi><2>-a\), \(π+a\), \(π-a\), \(\frac<3\pi><2>+a\), \(\frac<3\pi><2>-a\), \(2π+a\) и \(2π-a\). Аналогично их можно использовать для углов представленных в градусах: \(90^°+a\), \(90^°-a\), \(180^°+a\), \(180^°-a\), \(270^°+a\), \(270^°-a\), \(180^°+a\), \(180^°-a\). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Как быстро получить любую формулу приведения

Для начала обратите внимание, что все формулы имеют похожий вид:

Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс или котангенс , он либо останется синусом, либо превратиться в косинус . А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее.

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:
— как определить знак перед конечной функцией (плюс или минус)?
— как определить меняется ли функция на кофункцию или нет?

Как определить знак перед конечной функцией (плюс или минус)?

Какой знак был у исходной функции в исходной четверти, такой знак и нужно ставить перед конечной функцией.

Например, выводим формулу приведения для \(⁡cos⁡(\frac<3\pi><2>-a) =. \) С исходной функцией понятно – косинус, а исходная четверт ь ?

Для того, чтобы ответить на этот вопрос, представим, что \(a\) – угол от \(0\) до \(\frac<\pi><2>\), т.е. лежит в пределах \(0°…90^°\) (хотя это может быть не так, но для определения знака данная условность необходима). В какой четверти тригонометрической окружности при таком условии будет находиться точка, обозначающая угол \(\frac<3\pi><2>-a\)?
Чтобы ответить на вопрос, надо от точки, обозначающей \(\frac<3\pi><2>\), повернуть в отрицательную сторону на угол \(a\).

В какой четверти мы окажемся? В третьей. А какой же знак имеет косинус в третьей четверти? Минус. Поэтому перед итоговой функцией будет стоят минус: \(cos(\frac<3\pi><2>-a)=-. \)

Универсальная тригонометрическая подстановка, вывод формул, примеры

Данная статья посвящена разбору такой темы, как универсальная тригонометрическая подстановка. Суть данного термина состоит в том, что мы находим значение любой тригонометрической функции ( sin α , cos α , t g α , c t g α ) через формулу тангенса половинного угла. Этот вариант намного проще и рациональнее, так как выполнять дальнейшие вычисления легче без корней, а с целыми числами.

Мы подробно рассмотрим этот раздел. Для начала мы расскажем вам о формулах тангенса половинного угла, которой мы будем часто пользоваться. После мы перейдем к практическому применении формул, рассмотрим несколько примеров использования универсальной тригонометрической подстановки.

Универсальная тригонометрическая подстановка для sin α , cos α , t g α , c t g α

Во введении мы рассказали, что основной темой этого раздела станет основная тригонометрическая подстановка. Для начала запишем и разберем формулы, с помощью которых можно выразить sin α , cos α , t g α , c t g α через тангенс половинного угла α 2 .

sin α = 2 · t g α 2 1 + t g 2 α 2 , cos α = 1 — t g 2 α 2 1 + t g 2 α 2 t g α = 2 · t g α 2 1 — t g 2 α 2 , c t g = 1 — t g 2 α 2 2 · t g α 2

Указанные формулы будут правильны для всех углов α . Для работы в задаче должен быть определен входящие тангенсы и котангенсы.

Формулы для sin α и cos α , sin α = 2 · t g α 2 1 + t g 2 α 2 и cos α = 1 — t g 2 α 2 1 + t g 2 α 2 имеют место для a ≠ π + 2 π · z , где z – любое целое число, так как при a = π + 2 π · z , t g α 2 не определен.

Формула t g α = 2 · t g α 2 1 — t g 2 α 2 справедлива для α ≠ π 2 + π · z и a ≠ π + 2 π · z , так как при a = π 2 + π · z не определен t g α Знаменатель дроби обращается в нуль, а при α = π + 2 π · z не определен t g α 2 .

Формула c t g = 1 — t g 2 α 2 2 · t g α 2 , выражающая c t g через t g α 2 , справедлива для a ≠ π · z , так как при a = π · z не определен c t g , при a = π + 2 π · z не определен t g α 2 , а при α = 2 π · z знаменатель дроби обращается в нуль.

Вывод формул

Разберем вывод формул, выражающих sin α , cos α , t g α , c t g α через тангенс половинного угла. Начнем с формул для синуса и косинуса. Представим синус и косинус по формулам двойного угла как sin α = 2 · sin α 2 · cos α 2 и cos α = cos 2 α 2 — sin 2 α 2 соответственно. Теперь выражения 2 · sin α 2 · cos α 2 и cos 2 α 2 — sin 2 α 2 запишем в виде дробей со знаменателем 1 как 2 · sin α 2 · cos α 2 1 и cos 2 α 2 — sin 2 α 2 1 . Воспользуемся основным тождеством из тригонометрии и заменим единицы в знаменателе на сумму квадратов sin и cos , после чего получаем 2 · sin α 2 · cos α 2 sin 2 α 2 + cos 2 α 2 и cos 2 α 2 — sin 2 α 2 sin 2 α 2 + cos 2 α 2

Для решения данного выражения необходимо числитель и знаменатель полученных дробей разделить на cos 2 α 2 (его значение не равно нулю при условии α ≠ π + 2 π · z ). Вся формула будет выглядеть так sin α = 2 · sin α 2 · cos α 2 = 2 · sin α 2 · cos α 2 sin 2 α 2 + cos 2 α 2 = 2 · sin α 2 · cos α 2 cos 2 α 2 sin 2 α 2 + cos 2 α 2 cos 2 α 2 = 2 · sin α 2 cos α 2 sin 2 α 2 с os 2 α 2 + cos 2 α 2 с os 2 α 2 = 2 · t g α 2 t g 2 α 2 + 1

и cos α = cos 2 α 2 — sin 2 α 2 = c os 2 α 2 — sin 2 α 2 1 = c os 2 α 2 — sin 2 α 2 sin 2 α 2 + c os 2 α 2 = = cos 2 α 2 — sin 2 α 2 c os 2 α 2 sin 2 α 2 + c os 2 α 2 c os 2 α 2 = cos 2 α 2 cos 2 α 2 — sin 2 α 2 cos 2 α 2 sin 2 α 2 c os 2 α 2 + cos 2 α 2 c os 2 α 2 = 1 — t g 2 α 2 t g 2 α 2 + 1

Мы закончили вывод формул для sin и cos , завершив все вычислительные действия.

Следующий шаг – это вывод определенных формул для нахождения t g и c t g .

Взяв за основу описанные выше примеры t g α = sin α cos α и c t g α = cos α sin α , мы сразу получаем формулы, которые выражают тангенс и котангенс через тангенс половинного угла:

t g α = sin α cos α = 2 · t g α 2 1 + t g 2 α 2 1 — t g 2 α 2 1 + t g 2 α 2 = 2 · t g α 2 1 — t g 2 α 2 ;

c t g α = cos α sin α = 1 — t g 2 α 2 1 + t g 2 α 2 2 · t g α 2 1 + t g 2 α 2 = 1 — t g 2 α 2 2 · t g α 2 ;

В этом разделе мы нашли все формулы, которые нам потребуются для выражения основных тригонометрических функций.

Примеры использования в задачах и упражнениях

Для начала рассмотрим пример применения универсальной тригонометрической подстановки при преобразовании выражений.

Необходимо привести 2 + 3 · cos 4 α sin 4 α — 5 к примеру, который содержит только одну функцию t g 2 α .

В данном упражнении мы также воспользуемся универсальной подстановкой, которая является одним из важных правил тригонометрии. Применим к косинусу и синусу 4 α те самые формулировки, которые выражают основные функции через тангенс половинного угла. Получив сложное выражение, нам остается только его упростить.

2 + 3 · cos 4 α sin 4 α — 5 = 2 + t g 2 2 α t g 2 2 α + 1 2 · t g 2 α t g 2 2 α + 1 — 5 = 2 · t g 2 2 α + 2 + 3 — 3 · t g 2 2 α t g 2 2 α + 1 2 · t g 2 α — 5 · 2 · t g 2 2 α — 5 t g 2 2 α + 1 = t g 2 2 α — 5 5 · t g 2 2 α — 2 · t g 2 α + 5

2 + 3 · cos 4 α sin 4 α — 5 = t g 2 2 α — 5 5 · t g 2 2 α — 2 · t g 2 α + 5 .

Вспомним, что во введении мы подробно рассказали, как менять sin α , cos α , t g α , c t g α в частных случаях. Она заключается в том, чтобы преобразовать первоначальное рациональное выражение, содержащее sin , cos , t g и c t g , к выражению с одной функцией благодаря формуле. Это намного проще и понятнее. Мы выражаем все формулы через t g половинного угла. Данное преобразование обязательно пригодится при решении разнообразных уравнений и задач, интегрировании основных функций sin α , cos α , t g α , c t g α .

Формулы перехода от синуса к косинусу

Определения синуса, косинуса, тангенса и котангенса.

Знаки тригонометрических функций:

Значения тригонометрических функций

Формулы синуса, косинуса, тангенса и котангенса угла (–α):

sin (–α) = – sin α
cos (–α) = cos α
tg (–α) = – tg α
ctg (–α) = – ctg α

Все формулы приведения можно получить, пользуясь следующими правилами:
1. В правой части формулы ставится тот знак, который имеет левая часть при условии

2. Если в левой части формулы угол равен /2 ± или 3/2±, то синус заменяется на косинус, тангенс на котангенс и наоборот, если угол равен ± или 2, то замены не происходит.

Формулы двойного угла.

Формулы перехода от суммы к произведению.

Формулы перехода от произведения к сумме.

Формулы понижения степени.

Преобразование выражения a·cos + b·sin путем введения вспомогательного аргумента.

,

где вспомогательный аргумент определяется из условий

Основные формулы тригонометрии – это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin – α + 2 π z = – sin α , cos – α + 2 π z = cos α t g – α + 2 π z = – t g α , c t g – α + 2 π z = – c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = – sin α t g π 2 + α + 2 π z = – c t g α , c t g π 2 + α + 2 π z = – t g α sin π 2 – α + 2 π z = cos α , cos π 2 – α + 2 π z = sin α t g π 2 – α + 2 π z = c t g α , c t g π 2 – α + 2 π z = t g α sin π + α + 2 π z = – sin α , cos π + α + 2 π z = – cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π – α + 2 π z = sin α , cos π – α + 2 π z = – cos α t g π – α + 2 π z = – t g α , c t g π – α + 2 π z = – c t g α sin 3 π 2 + α + 2 π z = – cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = – c t g α , c t g 3 π 2 + α + 2 π z = – t g α sin 3 π 2 – α + 2 π z = – cos α , cos 3 π 2 – α + 2 π z = – sin α t g 3 π 2 – α + 2 π z = c t g α , c t g 3 π 2 – α + 2 π z = t g α

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β – sin α · sin β cos α – β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α · t g β c t g α ± β = – 1 ± c t g α · c t g β c t g α ± c t g β

На основе формул сложения выводятся тригонометрические формулы кратного угла.

Формулы кратного угла: двойного, тройного и т.д.

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α – sin 2 α , cos 2 α = 1 – 2 sin 2 α , cos 2 α = 2 cos 2 α – 1 t g 2 α = 2 · t g α 1 – t g 2 α с t g 2 α = с t g 2 α – 1 2 · с t g α sin 3 α = 3 sin α · cos 2 α – sin 3 α , sin 3 α = 3 sin α – 4 sin 3 α cos 3 α = cos 3 α – 3 sin 2 α · cos α , cos 3 α = – 3 cos α + 4 cos 3 α t g 3 α = 3 t g α – t g 3 α 1 – 3 t g 2 α c t g 3 α = c t g 3 α – 3 c t g α 3 c t g 2 α – 1

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin 2 α 2 = 1 – cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 – cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 – cos α

Формулы понижения степени

sin 2 α = 1 – cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α – sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 – 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

sin n α = C n 2 n 2 n + 1 2 n – 1 ∑ k = 0 n 2 – 1 ( – 1 ) n 2 – k · C k n · cos ( ( n – 2 k ) α ) cos n α = C n 2 n 2 n + 1 2 n – 1 ∑ k = 0 n 2 – 1 C k n · cos ( ( n – 2 k ) α )

sin n α = 1 2 n – 1 ∑ k = 0 n – 1 2 ( – 1 ) n – 1 2 – k · C k n · sin ( ( n – 2 k ) α ) cos n α = 1 2 n – 1 ∑ k = 0 n – 1 2 C k n · cos ( ( n – 2 k ) α )

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sin α + sin β = 2 sin α + β 2 · cos α – β 2 sin α – sin β = 2 sin α – β 2 · cos α + β 2 cos α + cos β = 2 cos α + β 2 · cos α – β 2 cos α – cos β = – 2 sin α + β 2 · sin α – β 2 , cos α – cos β = 2 sin α + β 2 · sin β – α 2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход – от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sin α · sin β = 1 2 · ( cos ( α – β ) – cos ( α + β ) ) cos α · cos β = 1 2 · ( cos ( α – β ) + cos ( α + β ) ) sin α · cos β = 1 2 · ( sin ( α – β ) + sin ( α + β ) )

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции – синус, косинус, тангенс и котангенс, – могут быть выражены через тангенс половинного угла.

Универсальная тригонометрическая подстановка

sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 – t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 – t g 2 α 2 c t g α = 1 – t g 2 α 2 2 t g α 2

Тригонометрические формулы

Тригонометрические формулы основаны на тригонометрических функциях (ТФ) углов.

Угол – есть фигура, образованная двумя двумя лучами $OA$ и $OB$ (стороны угла), исходящими из одной точки $O$ (вершина угла).

Мерой угла служит величина поворота вокруг вершины $O$, переводящего луч $OA$ в положение $OB$.

Распространены две системы измерения углов: градусная и радианная.

В градусной системе измерения углов за единицу принимается поворот луча на $1/360$ часть одного полного оборота — градус (обозначение $<>^circ $). Полный оборот составляет, таким образом, $360<>^circ $. Градус делится на 60 минут (обозначение $’$); минута — на 60 секунд (обозначение $”$).

В радианной системе измерения углов за единицу измерения принимается острый угол ($MON$), под которым видна из центра окружности её дуга $MN$, равная радиусу ($mathop limits^ =OM$). Такой угол называется радианом.

Теперь допустим, что угол $MON$ — произвольный. Тогда радианная мера этого угла равна отношению длины дуги $mathop limits^ $, описанной произвольным радиусом из центра $O$ и заключенной между сторонами угла, к радиусу $OM$ этой дуги.

Попробуй обратиться за помощью к преподавателям

Мера угла считается положительной, если вращение луча (радиуса $OM$) совершается против часовой стрелки, и отрицательной — в противном случае.

Переход от одного измерения к другому осуществляется по формулам: $alpha <>^circ =frac

cdot alpha$ или $alpha =frac

cdot alpha <>^circ $.

Полезно помнить следующую таблицу градусной и радианной меры некоторых часто встречающихся углов:

Определение синуса, косинуса и тангенса, знаки синуса, косинуса и тангенса

ТФ острого угла можно определить из прямоугольного треугольника:

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Из этой таблицы видно, как через синус и косинус можно выразить все остальные функции: $tgA=frac $; $ctgA=frac $; $scA=frac $; $csc A=frac $.

Полезно помнить значения основных ТФ для часто встречающихся значений углов:

ТФ приписывается определенный знак в зависимости от того, в какой четверти тригонометрического круга лежит подвижный радиус $OC$, образующий угол с неподвижным радиусом $OA$:

Обратные тригонометрические функции (ОТФ)

ОТФ называются угловые величины $y$ (в радианах), определяемые следующими равенствами и указываемые с прописной буквы:

$y=Arcsin x$, если $x=sin y$ — арксинус;

$y=Arccos x$, если $x=cos y$ — арккосинус;

$y=Arctgx$, если $x=tgy$ — арктангенс;

$y=Arcctgx$, если $x=ctgy$ — арккотангенс.

ОТФ многозначны. Поэтому из всего множества значений каждой из них выделяют главные, а наименования указывают со строчной буквы:


источники:

http://zaochnik.com/spravochnik/matematika/trigonometrija/universalnaja-trigonometricheskaja-podstanovka/

http://4apple.org/formuly-perehoda-ot-sinusa-k-kosinusu/