Как построить двуполостный гиперболоид по каноническому уравнению примеры

3.5.3. Двуполостный гиперболоид

Поверхность, задаваемая каноническим уравнением

Называется Двуполостным гиперболоидом.

Величины положительны и называются полуосями двуполостного гиперболоида.

1. Двуполостный гиперболоид — центральная поверхность с центром в начале координат; оси координат являются его осями симметрии, а координатные плоскости – плоскостями симметрии двуполостного гиперболоида.

2. Рассмотрим сечения этой поверхности координатными плоскостями. Сечение плоскостью XOZ задается уравнениями:

И представляет собой гиперболу, расположенную симметрично относительно координатных осей OX, OZ и пересекающую ось OZ в точках (0,0,с) и (0,0, — с).

Сечение плоскостью YOZ определяется уравнениями

и задает гиперболу, расположенную симметрично относительно осей OY и OZ и пересекающую ось OZ в точках (0,0,с) и (0,0, — с).

Рассмотрим теперь сечения данного гиперболоида плоскостями, параллельными координатной плоскости XOY (z = h), эти сечения задаются уравнениями

.

Поверхности второго порядка

Поверхности вращения.

Поверхность \(S\) называется поверхностью вращения с осью \(d\), если она составлена из окружностей, которые имеют центры на прямой \(d\) и лежат в плоскостях, перпендикулярных данной прямой.

Рассмотрим линию \(L\), которая лежит в плоскости \(P\), проходящей через ось вращения \(d\) (рис. 43), и будем вращать ее вокруг этой оси. Каждая точка линии опишет окружность, а вся линия — поверхность вращения.

Рис. 10.1. Поверхность вращения.

Выберем начало декартовой прямоугольной системы координат \(O, \boldsymbol_<1>, \boldsymbol_<2>, \boldsymbol_<3>\) на оси \(d\), вектор \(\boldsymbol_<3>\) направим вдоль \(d\), а вектор \(\boldsymbol_<1>\) поместим в плоскости \(P\). Таким образом, \(O, \boldsymbol_<1>, \boldsymbol_<3>\) — декартова система координат в плоскости \(P\). Пусть линия \(L\) имеет в этой системе координат уравнение \(f(x, y)=0\).

Рассмотрим точку \(M(x, y, z)\). Через нее проходит окружность, которая имеет центр на оси \(d\) и лежит в плоскости, перпендикулярной этой оси. Радиус окружности равен расстоянию от \(M\) до оси, то есть \(\sqrt+y^<2>>\). Точка \(M\) лежит на поверхности вращения тогда и только тогда, когда на указанной окружности имеется точка Мь принадлежащая вращаемой линии \(L\).

Точка \(M_<1>(x_<1>, y_<1>, z_<1>)\) лежит в плоскости \(P\), и потому \(y_<1>=0\). Кроме того, \(z_<1>=z\) и \(|x|=\sqrt+y^<2>>\), так как \(M_<1>\) лежит на той же окружности, что и \(M\). Координаты точки \(M_<1>\) удовлетворяют уравнению линии \(L\): \(f(x_<1>, z_<1>)=0\). Подставляя в это уравнение \(x_<1>\) и \(z_<1>\), мы получаем условие на координаты точки \(M\), необходимое и достаточное для того, чтобы \(M\) лежала на поверхности вращения \(S\): равенство
$$
f\left(\pm \sqrt+y^<2>>, z\right)=0\label
$$
должно быть выполнено хотя бы при одном из двух знаков перед корнем. Это условие, которое можно записать также в виде
$$
f\left(\sqrt+y^<2>>, z\right)f\left(-\sqrt+y^<2>>, z\right)=0,\label
$$
и является уравнением поверхности вращения линии \(L\) вокруг оси \(d\).

Эллипсоид.

Рассмотрим поверхности, которые получаются при вращении эллипса вокруг его осей симметрии. Направив вектор \(\boldsymbol_<3>\) сначала вдоль малой оси эллипса, а затем вдоль большой оси, мы получим уравнения эллипса в следующих видах:
$$
\frac>>+\frac>>=1,\ \frac>>+\frac>>=1.\nonumber
$$
(Здесь через \(c\) обозначена малая полуось эллипса.) В силу формулы \eqref уравнениями соответствующих поверхностей вращения будут
$$
\frac+y^<2>>>+\frac>>=1,\ \frac>>+\frac+y^<2>>>=1\ (a > c).\label
$$
Поверхности с такими уравнениями называются соответственно сжатым и вытянутым эллипсоидами вращения (рис. 10.2).

Рис. 10.2. Сжатый (а) и вытянутый (б) эллипсоиды вращения.

Каждую точку \(M(x, y, z)\) на сжатом эллипсоиде вращения сдвинем к плоскости \(y=0\) так, чтобы расстояние от точки до этой плоскости уменьшилось в постоянном для всех точек отношении \(\lambda Рис. 10.3. Эллипсоид.

Эллипсоид так же, как и эллипсоид вращения, из которого он получен, представляет собой замкнутую ограниченную поверхность. Из уравнения \eqref видно, что начало канонической системы координат — центр симметрии эллипсоида, а координатные плоскости — его плоскости симметрии.

Эллипсоид можно получить из сферы \(x^<2>+y^<2>+z^<2>=a^<2>\) сжатиями к плоскостям \(y=0\) и \(z=0\) в отношениях \(\lambda=b/a\) и \(\mu=c/a\).

В этой статье нам часто придется прибегать к сжатию, и мы не будем его каждый раз описывать столь подробно.

Конус второго порядка.

Рассмотрим на плоскости \(P\) пару пересекающихся прямых, задаваемую в системе координат \(O, \boldsymbol_<1>, \boldsymbol_<3>\) уравнением \(a^<2>x^<2>-c^<2>z^<2>=0\). Поверхность, получаемая вращением этой линии вокруг оси аппликат, имеет уравнение
$$
a^<2>(x^<2>+y^<2>)-c^<2>z^<2>=0\label
$$
и носит название прямого кругового конуса (рис. 10.4). Сжатие к плоскости \(y=0\) переводит прямой круговой конус в поверхность с уравнением
$$
a^<2>x^<2>+b^<2>y^<2>-c^<2>z^<2>=0\label
$$
называемую конусом второго порядка.

Обратите внимание на то, что левая часть уравнения \eqref — однородная функция, и поверхность является конусом в смысле определения, введенного ранее.

Рис. 10.4. Прямой круговой конус.

Однополостный гиперболоид.

Однополостный гиперболоид вращения — это поверхность вращения гиперболы
$$
\frac>>-\frac>>=1\nonumber
$$
вокруг той оси, которая ее не пересекает. По формуле \eqref мы получаем уравнение этой поверхности (рис. 10.5)
$$
\frac+y^<2>>>-\frac>>=1.\label
$$

Рис. 10.5. Однополостный гиперболоид вращения.

В результате сжатия однополостного гиперболоида вращения к плоскости \(y=0\) мы получаем однополостный гиперболоид с уравнением
$$
\frac>>+\frac>>-\frac>>=1.\label
$$

Интересное свойство однополостного гиперболоида — наличие у него прямолинейных образующих. Так называются прямые линии, всеми своими точками лежащие на поверхности. Через каждую точку однополостного гиперболоида проходят две прямолинейные образующие, уравнения которых можно получить следующим образом.

Покажем на примере, как найти образующие, проходящие через данную точку поверхности. Рассмотрим поверхность \(x^<2>+y^<2>-z^<2>=0\) и точку \(M_<0>(1, 1, 1)\) на ней. Подставляя координаты \(M_<0>\) в уравнения \eqref, мы получаем условия на \(\lambda\) и \(\mu\): \(2\lambda=2\mu\) и \(0 \cdot \lambda=0 \cdot \mu\). Первое из них определяет \(\lambda\) и \(\mu\) с точностью до общего множителя, но только с такой точностью они и нужны. Подставляя эти значения в \eqref, получаем уравнения прямолинейной образующей
$$
x+z=1+y,\ x-z=1-y.\nonumber
$$

Она проходит через \(M_<0>\), так как \(\lambda\) и \(\mu\) так и выбирались, чтобы координаты \(M_<0>\) удовлетворяли этой системе. Аналогично, подставляя координаты \(M_<0>\) в (10), находим условия на \(\lambda’\) и \(\mu’\): \(2\mu’=0\) и \(2\mu’=0\). Коэффициент \(\lambda’\) можно взять любым ненулевым, и мы приходим к уравнению второй образующей: \(x=z\), \(y=1\).

Если вместе с гиперболой мы будем вращать ее асимптоты, то они опишут прямой круговой конус, называемый асимптотическим конусом гиперболоида вращения. При сжатии гиперболоида вращения его асимптотический конус сжимается в асимптотический конус общего однополостного гиперболоида.

Двуполостный гиперболоид.

Двуполостный гиперболоид вращения — это поверхность, получаемая вращением гиперболы
$$
\frac>>-\frac>>=1\nonumber
$$
вокруг той оси, которая ее пересекает. По формуле \eqref мы получаем уравнение двуполостного гиперболоида вращения
$$
\frac>>-\frac+y^<2>>>=1.\label
$$
В результате сжатия этой поверхности к плоскости у=0 получается поверхность с уравнением
$$
\frac>>-\frac>>-\frac>>=1.\label
$$

Поверхность, которая в некоторой декартовой прямоугольной системе координат имеет уравнение вида \eqref, называется двуполостным гиперболоидом (рис. 10.6). Двум ветвям гиперболы здесь соответствуют две не связанные между собой части (“полости”) поверхности, в то время как при построении однополостного гиперболоида вращения каждая ветвь гиперболы описывала всю поверхность.

Асимптотический конус двуполостного гиперболоида определяется так же, как и для однополостного.

Рис. 10.6. Двуполостный гиперболоид вращения.

Эллиптический параболоид.

Вращая параболу \(x^<2>=2pz\) вокруг ее оси симметрии, мы получаем поверхность с уравнением
$$
x^<2>+y^<2>=2pz.\label
$$
Она называется параболоидом вращения. Сжатие к плоскости \(y=0\) переводит параболоид вращения в поверхность, уравнение которой приводится к виду
$$
\frac>>+\frac>>=2z.\label
$$

Поверхность, которая имеет такое уравнение в некоторой декартовой прямоугольной системе координат, называется эллиптическим параболоидом (рис. 10.7).

Рис. 10.7. Эллиптический параболоид.

Гиперболический параболоид.

По аналогии с уравнением \eqref мы можем написать уравнение
$$
\frac>>-\frac>>=2z.\label
$$

Поверхность, которая имеет уравнение вида \eqref в некоторой декартовой прямоугольной системе координат, называется гиперболическим параболоидом.

Исследуем форму этой поверхности. Для этого рассмотрим ее сечение плоскостью \(x=\alpha\) при произвольном \(\alpha\). В этой плоскости выберем декартову прямоугольную систему координат \(O’, \boldsymbol_<2>, \boldsymbol_<3>\) с началом в точке \(O'(\alpha, 0, 0)\). Относительно этой системы координат линия пересечения имеет уравнение
$$
-\frac>>=2\left(z-\frac<\alpha^<2>><2a^<2>>\right).\label
$$
Эта линия — парабола, в чем легко убедиться, перенеся начало координат в точку \(O″\) с координатами \((0, \alpha^<2>/(2a^<2>))\). (Координаты этой точки относительно исходной системы координат \(O, \boldsymbol_<1>, \boldsymbol_<2>, \boldsymbol_<3>\) в пространстве равны \((\alpha, 0, \alpha^<2>/(2a^<2>))\).)

Точка \(O″\), очевидно, является вершиной параболы, ось параболы параллельна вектору \(\boldsymbol_<3>\), а знак минус в левой части равенства \eqref означает, что ветви параболы направлены в сторону, противоположную направлению \(\boldsymbol_<3>\). Заметим, что после переноса начала координат в точку \(O″\) величина а не входит в уравнение параболы, и, следовательно, сечения гиперболического параболоида плоскостями \(x=\alpha\) при всех \(\alpha\) представляют собой равные параболы.

Будем теперь менять величину \(\alpha\) и проследим за перемещением вершины параболы \(O″\) в зависимости от \(\alpha\). Из приведенных выше координат точки \(O″\) следует, что эта точка перемещается по линии с уравнениями
$$
z=\frac><2a^<2>>,\ y=0\nonumber
$$
в системе координат \(O, \boldsymbol_<1>, \boldsymbol_<2>, \boldsymbol_<3>\). Эта линия — парабола в плоскости \(y=0\). Вершина параболы находится в начале координат, ось симметрии совпадает с осью аппликат, а ветви параболы направлены в ту же сторону, что и вектор \(\boldsymbol_<3>\).

Теперь мы можем построить гиперболический параболоид следующим образом: зададим две параболы и будем перемещать одну из них так, чтобы ее вершина скользила по другой, оси парабол были параллельны, параболы лежали во взаимно перпендикулярных плоскостях и ветви их были направлены в противоположные стороны.

При таком перемещении подвижная парабола описывает гиперболический параболоид (рис. 10.8).

Рис. 10.8. Гиперболический параболоид. \(OB\) — неподвижная парабола, \(KLM,\ NOP,\ QRS\) — положения подвижной параболы.

Сечения гиперболического параболоида плоскостями с уравнениями \(z=\alpha\) при всевозможных \(\alpha\) — гиперболы. Эти сечения нарисованы на рис. 10.9.

Рис. 10.9. Сечения гиперболического параболоида

Выводятся эти уравнения так же, как и уравнения прямолинейных образующих однополостного гиперболоида.

Рис. 10.10. Прямолинейные образующие гиперболического параболоида

Гиперболоиды: однополостный и двуполостный

Определение гиперболоида

Однополостным гиперболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

Двуполостным гиперболоидом называется поверхность, определяемая в некоторой прямоугольной системе координат каноническим уравнением

В уравнениях (4.48), (4.49) — положительные параметры, характеризующие гиперболоиды, причем .

Начало координат называют центром гиперболоида. Точки пересечения гиперболоида с координатными осями называются его вершинами. Это четыре точки однополостного гиперболоида (4.48) и две точки двуполостного гиперболоида (4.49). Три отрезка координатных осей, соединяющих вершины гиперболоидов, называются осями гиперболоидов. Оси гиперболоидов, принадлежащие координатным осям , называются поперечными осями гиперболоидов, а ось, принадлежащая оси аппликат , — продольной осью гиперболоидов. Числа , равные половинам длин осей, называются полуосями гиперболоидов.

Плоские сечения однополостного гиперболоида

Подставляя в уравнение (4.48), получаем уравнение линии пересечения однополостного гиперболоида с координатной плоскостью . Это уравнение в плоскости определяет эллипс, который называется горловым. Линии пересечения однополостного гиперболоида с другими координатными плоскостями являются гиперболами. Они называются главными гиперболами. Например, при получаем главную гиперболу , а при — главную гиперболу

Рассмотрим теперь сечение однополостного гиперболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.48), получаем

При любом значении параметра уравнение определяет эллипс с полуосями . Следовательно, сечение однополостного гиперболоида плоскостью представляет собой эллипс, центр которого лежит на оси аппликат, а вершины — на главных гиперболах. Среди всех эллипсов, получающихся в сечениях плоскостями при различных значениях параметра , горловой эллипс (при ) является эллипсом с наименьшими полуосями.

Таким образом, однополостный гиперболоид можно представить как поверхность, образованную эллипсами, вершины которых лежат на главных гиперболах (рис.4.42,а)

Плоские сечения двуполостного гиперболоида

Сечения двуполостного гиперболоида координатными плоскостями и представляют собой гиперболы (главные гиперболы).

Рассмотрим теперь сечения двуполостного гиперболоида плоскостями, параллельными плоскости . Подставляя , где — произвольная постоянная (параметр), в уравнение (4.49), получаем

При уравнение не имеет действительных решений (правая часть уравнения отрицательная, а левая неотрицательная), т.е. плоскость не пересекает двуполостный гиперболоид. При уравнение имеет нулевое решение . Следовательно, плоскости касаются двуполостного гиперболоида в его вершинах . При c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> получаем уравнение эллипса с полуосями . Следовательно, сечение двуполостного гиперболоида плоскостью при c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» /> представляет собой эллипс с центром на оси аппликат, вершины которого лежат на главных гиперболах.

Таким образом, двуполостный гиперболоид можно представить как поверхность образованную эллипсами, вершины которых лежат на главных гиперболах (рис.4.43,а).

Гиперболоиды вращения

Гиперболоид, у которого поперечные полуоси равны , называется гиперболоидом вращения . Такой гиперболоид является поверхностью вращения, а его сечения плоскостями (для двуполостного гиперболоида при c» png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAVBAMAAADlb+D4AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMAg0KoBP0QXdEhwHEx4v6hyb4AAADaSURBVCjPY2DAD/ZAae4D2GSFGBiqlgNpRgUcsofD8ckyh+GT5W2Ay1piyk4VgMtOXoQhW1q9WAFm8uTlMAn2VWZgWdMm5gtweye3Q2i25mkXwbJXJzDGIFyVCJHOaGAMBMlyBjIwByC5OfEiiBQtYFMAybKHM7AaIMmmN4LIUKirgN49ugHJ5O4EEBUFleVtYBHNMYDJToS6KpiBgRMkmyrAsIL5AMxHUEkGCwY2c5CsqgLDXnOM0MhaaAx2FQ/QjASILJsRIpiSEiBhBQY4Y4Fs2U2wlINFFgCrpSqpbSiUhgAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />) представляют собой окружности с центрами на оси аппликат. Однополостный или двуполостный гиперболоиды можно получить, вращая вокруг оси гиперболу (рис.4.42,б) или сопряженную гиперболу (рис.4.43,б) соответственно. Заметим, что уравнение последней можно записать в форме .

Гиперболоид, у которого поперечные оси различны , называется трехосным (или общим).

1. Плоскости определяют в пространстве основной прямоугольный параллелепипед , вне которого находится двуполостный гиперболоид (рис.4.43,в). Две грани параллелепипеда касаются гиперболоида в его вершинах.

2. Сечение однополостного гиперболоида плоскостью, параллельной оси аппликат и имеющей одну общую точку с горловым эллипсом (т.е. касающейся его), представляет собой две прямые, пересекающиеся в точке касания. Например, подставляя в уравнение (4.48), получаем уравнение двух пересекающихся прямых (см. рис.4.42,а).

3. Однополостный гиперболоид является линейчатой поверхностью, т.е. поверхностью, образованной движением прямой (см. рис.4.42,в). Например, однополостный гиперболоид вращения можно получить, вращая прямую вокруг другой прямой, скрещивающейся с ней (но не перпендикулярной).

4. Начало канонической системы координат является центром симметрии гиперболоида, координатные оси — осями симметрии гиперболоида, координатные плоскости — плоскостями симметрии гиперболоида.

В самом деле, если точка принадлежит гиперболоиду, то точки с координатами при любом выборе знаков также принадлежат гиперболоиду, поскольку их координаты удовлетворяют уравнению (4.48) или (4.49) соответственно.


источники:

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/second_order_surfaces/

http://mathhelpplanet.com/static.php?p=giperboloid