Как построить плоскость по уравнению плоскости

5.1.4. Как построить плоскость?

Несмотря на обилие программ и онлайн сервисов, ручное построение чертежей сохранит актуальность и через много лет, хотя бы потому, что позволит учащимся качественно усвоить материал. Что нужно знать и уметь в самых суровых условиях?

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно обозначают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. Размеры выбираем разумные, при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:

Повторим заодно и неравенства:

– неравенство (левый чертёж) задаёт дальнее от нас полупространство, исключая саму плоскость ;
– неравенство (чертёж посередине) задаёт правое полупространство, включая плоскость ;
– двойное неравенство (правый чертёж) задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Задача 124

Изобразить тело, ограниченное плоскостями , составить систему неравенств, определяющих данное тело.

Это задание для самостоятельного решения. Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед. Не забывайте, что невидимые рёбра и грани следует прочертить пунктиром. Готовый чертёж в конце книги.

НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами!
Особенно, если они кажутся простыми

А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Причём, несложный.

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

1) уравнение вида (здесь и далее ) задаёт плоскость, проходящую через ось ;
2) уравнение вида задаёт плоскость, проходящую через ось ;
3) уравнение вида задаёт плоскость, проходящую через ось .

Задача 125

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую, лежащую в этой плоскости. Данная прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую:

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм.

И ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:
– получено верное неравенство, значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Задача 126

Построить плоскости
а) , б) .

Это задания для самостоятельного решения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце книги.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Задача 127

Построить плоскость

Решение: в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде , из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины.

Уравнение плоскости в отрезках: описание, примеры, решение задач

Данный раздел будет полностью посвящен теме «Уравнение плоскости в отрезках». Мы последовательно рассмотрим, какой вид имеет уравнение плоскости в отрезках, применение этого уравнения для построения заданной плоскости в прямоугольной системе координат, переход от общего уравнения плоскости к уравнению плоскости в отрезках. В статье мы рассмотрим большое количество примеров, которые облегчат усвоение информации.

Уравнение плоскости в отрезках – описание и примеры

Уравнение плоскости в отрезках имеет вид x a + y b + z c = 1 , где a , b и c – это действительные числа, отличные от нуля. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекаются плоскостью на осях координат O х , O у и O z в трехмерной системе координат O х у z . Откладываются длины отрезков от начала координат. Направление, в котором необходимо отложить длину отрезка, определяет знак, стоящий перед числом. Наличие «-» свидетельствует о том, что отрезок надо откладывать от нуля в отрицательном направлении оси.

Действительно, координаты точек a , 0 , 0 , 0 , b , 0 , 0 , 0 , c удовлетворяют уравнению плоскости в отрезках:

a a + 0 b + 0 c = 1 = 1 ⇔ 1 = 1 0 a + b b + 0 c = 1 = 1 ⇔ 1 = 1 0 a + 0 b + c c = 1 = 1 ⇔ 1 = 1

Поясним этот момент, расположив заданные точки на графике.

Проиллюстрируем описанное выше примером.

Плоскость проходит через точки — 2 , 0 , 0 , 0 , 3 , 0 и 0 , 0 , — 1 2 на осях координат в прямоугольной системе координат O x y z . Необходимо записать уравнение плоскости в отрезках.

Решение

Определим положение отрезков, отсекаемых плоскостью на осях координат. На оси абсцисс откладываем в отрицательном направлении отрезок длиной 2 единицы. На оси ординат в положительном направлении откладываем отрезок длиной 3 . На оси аппликат в отрицательном направлении откладываем отрезок длиной 1 2 .

При этом, уравнение плоскости в отрезках будет иметь вид: x — 2 + y 3 + z — 1 2 = 1 .

Ответ: x — 2 + y 3 + z — 1 2 = 1

Уравнение плоскости в отрезках удобно использовать для построения чертежей. Проиллюстрируем это утверждение примером.

Плоскость в прямоугольной системе координат O х у z задана уравнением плоскости в отрезках вида x — 5 + y — 4 + z 4 = 1 . Необходимо изобразить эту плоскость на графике.

Решение

Изобразим оси координат, обозначаем начало координат и единичные отрезки на осях. Отмечаем длины отрезков, отсекаемых плоскостью, на каждой из осей. Соединяем концевые точки отрезков прямыми линиями. Полученная плоскость имеет вид треугольника. Она соответствует заданному уравнению плоскости в отрезках x — 5 + y — 4 + z 4 = 1 .

Ответ:

Плоскость может быть задана уравнением плоскости другого вида. Для того, чтобы изобразить заданную плоскость на чертеже, можно сначала перейти к уравнению плоскости в отрезках. Получив уравнение плоскости в отрезках, нам останется лишь отметить точки a , 0 , 0 , 0 , b , 0 , 0 , 0 , c и соединить их прямыми линиями.

Приведение общего уравнения плоскости к уравнению плоскости в отрезках

Мы имеем общее уравнение плоскости в пространстве вида A x + B y + C z + D = 0 . И мы можем получить уравнение плоскости в отрезках. Сделать это можно в том случае, если плоскость пересекает все координатные оси, причем не в начале координат.

Не получится перевести общее уравнение плоскости в пространстве в уравнение плоскости в отрезках в тех случаях, когда плоскость проходит через одну из координатных осей или располагается параллельно оси. Другими словами, мы можем работать лишь с полным уравнением плоскости вида A x + B y + C z + D = 0 , где A ≠ 0 , B ≠ 0 , C ≠ 0 , D ≠ 0 .

Приведение общего уравнения плоскости к уравнению плоскости в пространстве производится следующим образом. Переносим слагаемое D в правую часть уравнения с противоположным знаком.

A x + B y + C z + D = 0 ⇔ A x + B y + C z = — D

Так как D ≠ 0 , то обе части полученного уравнения можно разделить на – D : A — D x + B — D y + C — D z = 1 .

Так как A ≠ 0 , B ≠ 0 , C ≠ 0 , то мы можем отправить в знаменатели коэффициенты перед переменными x , y и z . Последнее уравнение эквивалентно равенству x — D A + y — D B + z — D C = 1 . При этом мы использовали очевидное равенство p q = 1 q p , p , q ∈ R , p ≠ 0 , q ≠ 0 .

В итоге, мы получаем уравнение плоскости в отрезках. Это становится хорошо видно в том случае, если обозначить — D A = a , — D B = b , — D C = c .

Разберем решение примера.

Плоскость в прямоугольной системе координат O x y z в пространстве задана уравнением вида 3 x + 9 y — 6 z — 6 = 0 . Переведем это уравнение в уравнение плоскости в отрезках.

Решение

Данное в условии задачи уравнение является полным уравнением плоскости. Это дает нам возможность привески его к уравнению плоскости в отрезках. Перенесем — 6 в правую часть равенства, а затем разделим обе части равенства на 6 :

3 x + 9 y — 6 z — 6 = 0 ⇔ 3 x + 9 y + 6 z = 6 3 x + 9 y — 6 z = 6 ⇔ 1 2 x + 3 2 y — z = 1

Коэффициенты при переменных x, y и z отправим в знаменатели: 1 2 x + 3 2 y — z = 1 ⇔ x 2 + y 2 3 + z — 1 = 1 . Полученное уравнение и есть уравнение плоскости в отрезках.

Ответ: x 2 + y 2 3 + z — 1 = 1

Плоскость в трехмерном пространстве с примерами решения

Содержание:

Общее уравнение плоскости:

Пусть

которое называется уравнением плоскости, проходящей через точку и имеющей нормальный вектор . Его можно преобразовать к виду

(8.1.2)

где . Уравнение (8.1.2) называется общим уравнением плоскости.

Приведём уравнение плоскости (8.1.2) к специальному виду. Для этого перенесём свободный член в правую часть уравнения: .

Разделим обе части уравнения на —D получим:

(8.1.3)

Это и есть специальный вид уравнения плоскости или уравнение плоскости «в отрезках», где а, b, с — величины отрезков, которые отсекает плоскость на координатных осях.

Если плоскость проходит через точки , не лежащие на одной прямой, то её уравнение можно записать в виде

Разложив данный определитель по элементам первой строки, придём к уравнению вида (8.1.1).

Уравнения (8.1.1), (8.1.3), (8.1.4) можно привести к виду (8.1.2).

Пример:

Составить уравнение плоскости, проходящей через точки А(0, -2, -1), В(2, 4, -2) и С(3, 2, 0).

Решение:

Воспользуемся формулой (8.1.4), где

Подставив координаты точек A, В и С, получим: Разложим определитель по элементам первой строки:Вычислив три определителя второго порядка, получим уравнение: . Сократив на 5 и приведя подобные, найдем уравнение искомой плоскости АВС: .

Взаимное расположение двух плоскостей, прямой и плоскости

Углом между прямой и плоскостью будем называть угол, образованный прямой и ее проекцией на плоскость (рис. 8.1). Пусть прямая L и плоскость а заданы уравнениями:

Рассмотрим направляющий вектор прямой L и нормальный вектор плоскости (рис. 8.1). Если угол между ними острый, то его можно представить в виде разности, где — угол между прямой L й плоскостью . Тогда косинус угла между векторами и равен синусу угла между прямой L и плоскостью т.е.

.

Если угол между векторами тупой, то его можно представить в виде суммы . Поэтому в любом случае . Воспользовавшись формулой вычисления косинуса угла между векторами, получим формулу и для вычисления угла между прямой L и плоскостью:

Условие перпендикулярности прямой и плоскости. Прямая и плоскость перпендикулярны тогда и только тогда, когда направляющий вектор прямой L и нормальный вектор плоскости коллинсарны, т.е. их координаты пропорциональны:

Условие параллельности прямой и плоскости. Прямая L и плоскость параллельны тогда и только тогда, когда векторы и

перпендикулярны, т.е. их скалярное произведение равно нулю: (8.2.3)

Пример:

Написать уравнение плоскости, проходящей через точку параллельно прямым и

Решение:

Так как , то уравнение плоскости будем искать в виде

Применяя условие параллельности (8.2.3) прямой и плоскости, получим систему линейных уравнений

где

Решив систему, найдем:

Подставив найденные значения коэффициентов А,В,С, полУ

чим искомое уравнение плоскости:

Угол между плоскостями. Рассмотрим две плоскости заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно,

что угол между нормальными векторами плоскостей равен одному из указанных смежных двугранных углов

или .Поэтому . Т.к. и

, то

Пример:

Определить угол между плоскостями

Решение:

Воспользовавшись формулой (8.2.4), получим:

Условие параллельности двух плоскостей. Две плоскости параллельны тогда и только тогда, когда их нормальные векторы и параллельны.

Векторы параллельны, если их координаты пропорциональны:

Две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны. Следовательно, их скалярное произведение равно нулю: , или (8.2.6)

Пример:

Составить уравнение плоскости, проходящей через точку M(-2, 1, 4) параллельно плоскости .

Решение:

Уравнение плоскости будем искать в виде . Из условия параллельности плоскостей следует, что: . Положив А=3, В=2, С=-7, получим уравнение плоскости

Так как , то координаты этой точки удовлетворяют уравнению. Подставив координаты точки, — 6+2 — 28+D=0, найдем D = 32. Тогда искомое уравнение плоскости будет иметь вид: 3х + 2у -7z + 32=0.

Пример:

Составить уравнение плоскости, проходящей через точкиперпендикулярно плоскости x+y+z=0.

Решение:

Так как , то используя уравнение плоскости, проходящей через заданную точку, будем иметь

Далее, так как , то подставив координаты точки в записанное уравнение, получим равенство -А-2С = 0 или А + 2С = 0.

Учитывая, что заданная плоскость перпендикулярна искомой, составим еще одно уравнение: A+B+С=0. Получим систему:

Выразив коэффициенты А и В через С: А = -2 С, В=С и подставив их в уравнение (8.2.7), -2С (х-1)+С (у-1)+С (z-l)=0, определяем искомое уравнение: —2х + у +z = 0 .

Понятие гиперплоскости

Взаимное расположение гиперплоскостей:

Рассмотрим n-мерное векторное пространство Пусть вектор этого пространства имеет координаты . По аналогии с пространством , естественно считать, что и в n-мерном векторном пространстве координаты произвольного вектора являются в то же время координатами некоторой точки М пространства . Тогда вектор х назовём радиус-вектором точки М Следовательно, каждому вектору можно поставить в соответствие точку и мы получим n-мерное точечное пространство. Точка О с координатами (О, 0, . 0) называется началом координат. Ей отвечает нулевой вектор. Геометрическое место точек называется координатной осью. Следовательно. в имеется n координатных осей:

Совокупность точек называется координатной гиперплоскостью .

Определение 8.3.1. Гиперплоскостью в п-мериом пространстве называется геометрическое место точек, координаты которых удовлетворяют линейному (векторному) уравнению:

где — произвольные действительные числа.

Заметим, что все не могут равняться нулю.

Рассмотрим две гиперплоскости:

Множество точек, принадлежащих как первой, так и второй гиперплоскости, называется их пересечением.

Теорема 8.3.1. Две гиперплоскости (8.3.2) и (8.3.3) не пересекаются в том и только в том случае, когда коэффициенты при соответствующих неизвестных пропорциональны, а свободные члены находятся в ином отношении:

Доказательство. Пусть гиперплоскости (8.3.2) и (8.3.3) не пересекаются. Следовательно, они не имеют общих точек и система

несовместна.

И наоборот, если система несовместна, то гиперплоскости (8.3.2) и (8.3.3) не пересекаются.

В силу теоремы Кронекера- Капелли система (8.3.5) несовместна, если ранг матрицы не равен рангу расширенной матрицы системы. А так как ранг расширенной матрицы системы не больше 2, то ранг матрицы системы должен ть равен 1. Эта возможность выражается условием (8.3.4).Поскольку для того, чтобы матрица имела ранг r = 1, нужно, чтобы строки были линейно зависимы, т.е. пропорциональны.

Ранг матрицы будет равен двум, если существует хотя бы один определитель второго порядка не равный нулю, т.е. если строки не пропорциональны. Теорема доказана.

Теорема 8.3.2. Для того, чтобы уравнения (8.3.2) и (8.3.3) определят одну и ту же гиперплоскость, необходимо и достаточно, чтобы выполнялись условия:

Доказательство. Достаточность. Пусть условия (8.3.6) выполнены. Обозначим отношения через t, т.е.

Тогда уравнение (8.3.2) можно получить из (8.3.3) умножением всех его членов на t. Поэтому уравнения равносильны и, следовательно, определяют одну и ту же гиперплоскость.

Необходимость. Пусть уравнения (8.3.2) и (8.3.3) определяют одну и ту же гиперплоскость. Система (8.3.5) совместна и, следовательно, ранг матрицы системы равен рангу расширенной матрицы. И т.к. эта система определяет одну гиперплоскость, то каждое из уравнений можно рассматривать как систему. Поэтому ранг этой системы равен 1 и все миноры второго порядка равны нулю, т.е.

Откуда следует, что

Определение 8.3.2. Две гиперплоскости называются параллель-ными, если они не пересекаются или совпадают.

Тогда из теорем 8.3.1 и 8.3.2 вытекает

Теорема 8.3.3. Две гиперплоскости (8.3.2) и (8.3.3) параллельны тогда и только тогда, когда соответствующие коэффициенты

пропорциональны, т.е.

Введем понятие прямой в n мерном пространстве по аналогии с параметрическими уравнениями прямой в трехмерном пространстве.

Определение 8.3.3. Прямой в называется множество точек (или векторов , удовлетворяющих уравнениям:

где , a t- переменный параметр, .

Определение 8.3.4. Отрезком в называется множество точек (или векторов ), удовлетворяющих уравнениям (8.3.7) при изменении параметра t в закрытом интервале . Точки называются концами отрезка.

Теорема 8.3.4. Всякая точка отрезка может быть выражена линейной комбинацией его концов:

Если в трехмерном пространстве провести плоскость, то она разделит его на две части, называемые полупространствами. Очевидно, и гиперплоскость разделит n-мерное пространство на полупространства, т.е. справедливо.

Определение 8.3.5. Полупространствами, порождаемыми гиперплоскостью называются два множества точек, удовлетворяющих соответственно условиям:

Гиперплоскость принадлежит обоим полупространствам, является их общей частью. Из (8.3.9) следует, что любое линейное неравенство геометрически определяет полупространство соответствующей размерности.

Определение 8.3.6. Множество точек удовлетворяющих условию или называется гиперсферой с центром в точке и радиусом r.

Системы m линейных неравенств с n неизвестными

В элементарной математике мы познакомились с линейными неравенствами одного или двух переменных:

Решением таких неравенств является промежуток числовой оси или полуплоскость.

Рассмотрим теперь линейное неравенство с n переменными:

в n-мерном пространстве.

Несколько неравенств, рассматриваемых совместно, образуют систему:

Определение 8.4.1. Областью решений системы т неравенств с п неизвестными называется множество точек пространства координаты которых удовлетворяют каждому из неравенств системы.

Из того факта, что областью решения линейного неравенства является полупространство, вытекает

Теорема 8.4.1. Область решений системы линейных неравенств есть пересечение некоторого числа полупространств.

Это пересечение является выпуклым множеством; оно ограничено гиперплоскостями

Так как линейные неравенства (8.4.1) независимы, то система (8.4.2) при m-n будет либо определённой, либо несовместной. И, следовательно, пересечение n гиперплоскостей в n-мерном пространстве либо даёт точку, либо не содержит ни одной точки.

Так как число систем по n уравнений с n неизвестными, которое может быть получено из (8.4.2) не может быть сколь угодно большим, и так как не всякая точка пересечения гиперплоскостей (является решением) принадлежит пересечению всех m гиперплоскостей, то число крайних точек, т.е. точек пересечения гиперплоскостей, принадлежащих данному множеству, ограничено. Следовательно, рассматриваемое множество будет многогранником, а крайние точки — его вершинами.

Итак, .областью решений совместной системы линейных нера-qchqtb является выпуклый многогранник, гранями которого служат некоторые части гиперплоскостей.

Пример:

Найти решение системы линейных неравенств

Решение:

Строим на плоскости граничные прямые:

соответствующие заданным неравенствам (рис. 8.3). Каждая из них делит плоскость на две полуплоскости, одна из которых является решением соответствующего неравенства. Для выбора полуплоскости, являющейся решением неравенства, подставляем начало координат О (0, 0) в каждое неравенство. Если получаем верное неравенство, то полуплоскость, содержащая начало координат, является решением неравенства, в противном случае — полуплоскость, не содержащая начало координат, является решением неравенства.

Стрелки указывают полуплоскости, являющиеся областями решений данных неравенств. Пересечение отмеченных полуплоскостей- заштрихованный четырехугольник АВСД на рис. 8.3- область решения данной системы.

Применение систем линейных неравенств в экономических исследованиях

Рассмотрим систему m линейных неравенств с n переменными:

Каждое неравенство системы определяет полупространство. Решением системы (8.5.1) является пересечение этих полупространств.

Системы линейных неравенств широко применяются во многих экономических задачах, в частности, при построении линейной модели производства. Производственный способ описывает производство продукции и расход ресурсов в единицу времени. Он математически задается вектором выпуска или вектором валовой продукции и вектором называемым вектором затрат, отвечающим выпуску x.

Если в производственной системе используется m видов производственных ресурсов, определены запасы ресурса i при использовании j-той технологии, то модель производственной системы математически приобретает вид системы линейных неравенств (8.5.1), в которой .

Пример:

Пусть известно содержание питательных веществ в единице каждого из имеющихся в хозяйстве кормов. Известна также цена каждого корма. Требуется определить все возможные рационы для кормления скота, которые удовлетворяли бы суточную потребность в каждом питательном веществе, а общая стоимость используемых кормов не превосходила бы A.

Решение:

Введем обозначения: m — число питательных веществ; n — число изменяющихся видов кормов; —количество единиц i -го питательного вещества в единице j -го корма; — дневная потребность в / -ом питательном веществе; —стоимость единицы j -го корма; —количество единиц j-го корма, используемого в рационе .

Задача рациона формулируется следующим образом: определить рацион , удовлетворяющий условиям:

стоимость которого ограничена величиной А: .

Например, пусть;

Тогда получаем систему:

Определим множество решений данной системы на плоскости . Вначале строим граничные прямые

(рис. 8.4) соответствующие данным неравенствам. Каждая из них делит плоскость на две полуплоскости, одна из которых является решением соответствующего неравенства. Для выбора полуплоски являющейся решением неравенства, подставляем в каждое неравенство.

Если получаем верное неравенство, то полуплоскость, содержащая начало координат, является решением неравенства, в противном случае — полуплоскость, не содержащая начало координат, является решением неравенства.

Стрелки на прямых указывают полуплоскости, являющиеся областями решений данных неравенств. Заштрихованный четырехугольник и определяет все возможные рационы для кормления скота, удовлетворяющие данным условиям.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Функция одной переменной
  • Производная функции одной переменной
  • Приложения производной функции одной переменной
  • Исследование поведения функций
  • Ранг матрицы — определение и вычисление
  • Определители второго и третьего порядков и их свойства
  • Метод Гаусса — определение и вычисление
  • Прямая линия на плоскости и в пространстве

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-ploskosti-v-otrezkah/

http://www.evkova.org/ploskost-v-trehmernom-prostranstve