Как построить поверхность вращения по уравнению

Поверхности второго порядка. Поверхности вращения.

Поверхность S называется поверхностью вращения вокруг оси OZ, если для любой точки M0(x0,y0,z0)

этой поверхности окружность, проходящая через эту точку в плоскости z=z0 с центром в (0,0,z0) и радиусом

, целиком принадлежит этой поверхности.

Теорема (об уравнении поверхности вращения).

Если в некоторой декартовой прямоугольной системе координат поверхность S задана уравнением

F(x 2 +y 2 ,z)=0, то S — поверхность вращения вокруг оси OZ.

Эллипсоид:

Мнимый эллипсоид.

где a > 0, b > 0, c > 0. Эта поверхность не имеет ни одной вещественной точки.

Свойства эллипсоида.

1. Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует, что

2. Эллипсоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно координатных осей,
  • плоскостной симметрией относительно начала координат.

3. В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается

Однополостной гиперболоид.

Свойства однополостного гиперболоида.

1. Однополостной гиперболоид – неограниченная поверхность, поскольку из его уравнения следует, что

2. Однополостной гиперболоид обладает:

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, получается

эллипс, а плоскостями, ортогональными осям Ox и Oyгипербола.

Двуполостной гиперболоид.

Свойства двуполостного гиперболоида.

1. Двуполостный гиперболоид – неограниченная поверхность, поскольку из его уравнения следует,

что и неограничен сверху.

2. Двуполостный гиперболоид обладает

  • центральной симметрией относительно начала координат,
  • осевой симметрией относительно всех координатных осей,
  • плоскостной симметрией относительно всех координатных плоскостей.

3. В сечении однополостного гиперболоида плоскостью, перпендикулярной оси координат Oz, при

получается эллипс, при – точка, а в сечении плоскостями, перпендикулярными осям

Ox и Oy, – гипербола.

Эллиптический параболоид.

В случае, если a=b≠0, перечисленные выше (эллипсоид, однополостной гиперболоид, двуполостной

гиперболоид, эллиптический параболоид) поверхности являются поверхностями вращения.

Эллиптический параболоид.

Свойства эллиптического параболоида.

1. Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует,

что z ≥ 0 и принимает сколь угодно большие значения.

2. Эллиптический параболоид обладает:

  • осевой симметрией относительно оси Oz,
  • плоскостной симметрией относительно координатных осей Oxz и Oyz.

3. В сечении эллиптического параболоида плоскостью, ортогональной оси Oz, получается эллипс, а

плоскостями, ортогональными осям Ox и Oy – парабола.

Уравнение эллиптического параболоида имеет вид:

Если a=b, то эллиптический параболоид представляет собой поверхность вращения, образованную

вращением параболы, параметр которой , вокруг вертикальной оси, проходящей через

вершину и фокус данной параболы.

Пересечение эллиптического параболоида с плоскостью z=z0>0 является эллипсом.

Пересечение эллиптического параболоида с плоскостью x=x0 или y=y0 является параболой.

Как построить поверхность вращения по уравнению

Рассмотрим сечение плоскостью у = 0. Получается парабола = z, её ветви направлены вверх, вершина в точке (0, 0, 0).

Рассмотрим сечение плоскостью x = h. Это опять парабола:

Её ветви направлены вниз, вершина смещена по оси OZ на величину . то есть находится в точке . Заметим, что эта точка лежит на параболе

Теперь, изменяя h, видим, что поверхность гиперболического параболоида состоит из парабол, расположенных в плоскостях x = h, вершины которых находятся на параболе .

Как построить поверхность вращения по уравнению

Многое, что окружает нас в жизни, если смотреть с позиции геометрии, — это линии и поверхности простых и сложных форм. Поверхности широко используются в различных областях науки и техники при создании очертаний различных технических форм или как объекты инженерных исследований.

Основные понятия и определения

Поверхность как объект инженерного исследования может быть задана следующими основными способами: а) уравнением; б) каркасом; в) определи гелем; г) очерком.

Составлением уравнений поверхностей занимается аналитическая геометрия; она рассматривает поверхность как множество точек, координаты которых удовлетворяют уравнению вида F (х,у, z) = 0.

В начертательной геометрии поверхность на чертеже задается каркасом, определителем, очерком.

При каркасном способе поверхность задастся совокупностью некоторого количества линий, принадлежащих поверхности. В качестве линий, образующих каркас, как правило, берут семейство линий, получающихся при пересечении поверхности рядом параллельных плоскостей. Этот способ используется при проектировании кузовов автомобилей, в самолето — и судостроении, в топофафии и т. п.

Поверхность, образованная движущейся в пространстве линией, на чертеже может быть задана определителем поверхности.

Определителем поверхности называется совокупность геометрических фигур и связей между ними. позволяющих однозначно образовать поверхность в пространстве и задать ее на чертеже.

Способ образования поверхности движущейся в просфанстве линией называют кинематическим.

Линию, образующую при своем движении в пространстве данную поверхность называют образующей (производящей).

Образующая при своем движении может изменять свою форму или оставаться неизменной. Закон перемещения образующей можно, в частности, задать неподвижными линиями, на которые при своем движении опирается образующая. Эти линии называются направляющими.

На чертеже при задании поверхности ее определителем строятся проекции направляющих линий, указывается, как находятся проекции образующей линии. Построив ряд положений образующей линии, получим каркас поверхности. Пример образования поверхности кинематическим способом показан на рис. 96.

В качестве образующей а этой поверхности взята плоская кривая. Закон перемещения образующей задан двумя направляющими m и n и плоскостью а. Образующая а скользит по направляющим, все время оставаясь параллельной плоскости a.

Различают геометрическую и алгоритмическую часть определителя поверхности. Определитель имеет следующую форму записи Ф( Г ) [ А ], где Ф — обозначение поверхности; ( Г ) -геометрическая часть определителя, в ней перечисляются все геометрические фигуры, участвующие в образовании поверхности и задании ее на чертеже; [А ] — алгоритмическая часть определителя — в ней записывается алгоритм формирования поверхности.

Определитель поверхности выявляется путем анализа способов образования поверхности или се основных свойств. В общем случае одна и та же поверхность может быть образована несколькими способами, поэтому может иметь несколько определителей. Обычно из всех способов образования поверхности выбирают простейший. Например, боковая поверхность прямого кругового цилиндра может быть образована четырьмя способами (рис. 97):

а) как след, оставляемый в пространстве прямой а при ее вращении вокруг оси m (рис. 97,а).

Определитель поверхности — Ф ( а,m ) [ A1]:

б) как след, оставляемый в пространстве кривой линией b при ее вращении вокруг оси m (рис. 97,6).

Определитель поверхности — Ф ( b,m ) [ A2];

в) как след, оставляемый в пространстве окружностью с при поступательном перемещении ее центра О вдоль оси m. при этом плоскость окружности все время остается перпендикулярной к этой оси (рис. 97,в).

Определитель поверхности — Ф ( а,m ) [ A3]:

г) как огибающую всех положений сферической поверхности р постоянного радиуса, центр которой перемещается по оси m (рис.97,г).

Определитель поверхности —Ф ( p,m ) [ A4].

Наиболее простым из рассматриваемых будет определитель Ф ( а,m ) [ A1].

Задание поверхности на чертеже каркасом или определителем не всегда обеспечивает наглядность ее изображения. В некоторых случаях поверхность целесообразнее задавать ее очерком.

Очерком поверхности называется проекция проецирующей цилиндрической поверхности, огибающей заданную поверхность.

По известному уравнению поверхности или се определителю, или очерку всегда можно построить каркас поверхности.

Многообразие поверхностей требует их систематизации. Для поверхностей, образованных кинематическим способом в основу систематизации положен их определитель.

В зависимости от вида образующей поверхности разделяются на два класса:

класс 1 — поверхности нелинейчатые (образующая — кривая линия);

класс 2 — поверхности линейчатые (образующая — прямая линия).

Поверхности нелинейчатые

Поверхности нелинейчатые подразделяют на поверхности с образующей переменного вида (изменяющей свою форму в процессе движения) и на поверхности с образующей постоянного вида.

Нелинейчатые поверхности с образующей переменного вида

К нелинейчатым поверхностям с образующей переменного вида относятся:

1. Поверхность общего вида. Такая поверхность образуется перемещением образующей переменного вида а по криволинейной направляющей т (рис. 98).

2. Каналовая поверхность. Эта поверхность образуется движением плоской замкнутой линии, плоскость которой определенным образом ориентирована в пространстве (рис. 99).

Площадь, ограниченная образующей, монотонно изменяется в процессе ее движения но направляющей. Например, каналовую поверхность имеет переходный участок, соединяющий два трубопровода разной формы.

3. Циклическая поверхность — частный случай каналовой поверхности, когда образующая — окружность, радиус которой монотонно изменяется (рис. 100).

Примером циклической поверхности может быть корпус духового музыкального инструмента.

Нелинейчатые поверхности с образующей постоянного вида

К нелинейчатым поверхностям с образующей постоянного вида относятся:

1. Поверхность общего вида. Такая поверхность может быть образована движением произвольной кривой линии а по направляющей m (рис. 101).

2. Трубчатая поверхность. Образующей трубчатой поверхности является окружность постоянного радиуса. Плоскость окружности при ее движении остается перпендикулярной к направляющей (рис. 102).

Примером трубчатой поверхности может быть поверхность проволоки круглого сечения.

Поверхности линейчатые

Линейчатые поверхности образуются движением прямой (образующей) по заданному закону. В зависимости от закона движения образующей получаем различные линейчатые поверхности.

Линейчатые поверхности с тремя направляющими

К линейчатым поверхностям с тремя направляющими относятся:

1. Поверхность косого цилиндра. Такая поверхность может быть образована движением прямолинейной образующей по трем криволинейным направляющим (рис. 103).

2. Поверхность дважды косого цилиндроида. Эта поверхность образуется в том случае, когда две направляющие кривые, а третья -прямая линия (рис. 104).

3. Поверхность дважды косого коноида получается в том случае, когда одна из направляющих — кривая, а две других — прямые линии (рис. 105).

4. Поверхность однополостного гиперболоида образуется в случае, когда направляющие — три скрещивающиеся прямые, параллельные одной плоскости. Пример. Найти недостающие проекции точек А» и В’ принадлежащих поверхности однополостного гиперболоида (рис. 106).

P e ш е н и е. Для определения недостающей проекции точки, воспользуемся признаком принадлежности ее поверхности: точка принадлежит поверхности; если она принадлежит какой-либо линии этой поверхности.

Для данной линейчатой поверхности при построении проекций образующей сначала задается ее горизонтальная проекция, а затем находится фронтальная. Поэтому через известную горизонтальную проекцию точки A’ проводим проекцию образующей а’2, определяем ее фронтальную проекцию а2«, на которой по линии связи найдем искомую фронтальную проекцию точки .

Для определения недостающей горизонтальной проекции точки В’ выполним следующие построения:

1. Построим ряд образующих заданной поверхности a1,a2,a3,a4 .

2. На фронтальной плоскости проекций через известную проекцию точки В» проведем проекцию вспомогательной линии b’ принадлежащей заданной поверхности и пересекающей образующие.

3. По известным фронтальным проекциям точек пересечения проекции линии с образующими а1«, а2«, а3«, а4« найдем горизонтальные проекции этих точек. Соединив их плавной линией, построим горизонтальную проекцию вспомогательной линии b’ на которой по линии связи найдем искомую проекцию точки В’.

К линейчатым поверхностям с тремя направляющими относятся, например, поверхности гребных винтов судов и пропеллеров самолетов. В архитектуре и строительстве они используются при возведении крытых зданий стадионов, рынков, вокзалов.

Линейчатые поверхности с двумя направляющими и плоскостью параллелизма (поверхности Каталана)

К линейчатым поверхностями с двумя направляющими плоскостью параллелизма относятся:

1. Поверхность прямого цилиндроида. Такая поверхность может быть образована движением прямолинейной образующей по двум направляющим m и n в том случае, когда они — гладкие кривые линии, причем одна из них — плоская кривая, плоскость которой β перпендикулярна плоскости параллелизма a (n ⊂ β, β ⊥ a) (рис. 107).

2. Поверхность прямого коноида. Эта поверхность получается в том случае, когда одна направляющая — кривая линия, а вторая -прямая, причем она перпендикулярна плоскости параллелизма

a( n ⊥ a) (рис. 108). Поверхность прямого коноида используется в гидротехническом строительстве для формирования поверхности устоев мостовых опор.

3. . Такая поверхность образуется в том случае, когда две направляющие — скрещивающие прямые (рис. 109). Поверхность косой плоскости применяется в инженерно — строительной практике для формирования поверхностей откосов, насыпей, железнодорожных и автомобильных дорог, набережных, гидротехнических сооружений в местах сопряжения имеющих различные углы наклона.

Линейчатые поверхности с одной направляющей (торсы)

Торсы являются развертываемыми поверхностями — они могут быть совмещены с плоскостью без складок и разрывов. К торсовым поверхностям относятся:

1. Поверхность с ребром возврата. Эта поверхность образуется движением прямолинейной образующей, во всех своих положениях касательной к пространственной кривой, называемой ребром возврата.

2. Цилиндрическая поверхность. Данная поверхность образуется движением прямолинейной образующей, скользящей по кривой направляющей и остающейся параллельной своему исходному состоянию (рис.110).

3. Коническая поверхность. Эта поверхность образуется движением прямолинейной образующей, скользящей по кривой направляющей и проходящей во всех своих положениях через одну и ту же неподвижную точку S (рис. 111).


источники:

http://www.chem-astu.ru/chair/study/algebra-geometry/?p=232

http://forkettle.ru/vidioteka/tekhnicheskie-nauki/cherchenie/780-osnovy-nachertatelnoj-geometrii/8638-poverkhnosti