Как правильно делить в уравнении

Деление многочленов

Продолжаем изучать многочлены. В данном уроке мы научимся их делить.

Деление многочлена на одночлен

Чтобы разделить многочлен на одночлен, нужно разделить на этот одночлен каждый член многочлена, затем сложить полученные частные.

Например, разделим многочлен 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy . Запишем это деление в виде дроби:

Теперь делим каждый член многочлена 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy. Получающиеся частные будем складывать:

Получили привычное для нас деление одночленов. Выполним это деление:

Таким образом, при делении многочлена 15x 2 y 3 + 10xy 2 + 5xy 3 на одночлен xy получается многочлен 15xy 2 + 10y + 5y 2 .

При делении одного числа на другое, частное должно быть таким, чтобы при его перемножении с делителем, получалось делимое. Это правило сохраняется и при делении многочлена на одночлен.

В нашем примере произведение полученного многочлена 15xy 2 + 10y + 5y 2 и делителя xy должно быть равно многочлену 15x 2 y 3 + 10xy 2 + 5xy 3 , то есть исходному делимому. Проверим так ли это:

Деление многочлена на одночлен очень похоже на сложение дробей с одинаковыми знаменателями. Мы помним, что для сложения дробей с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений.

Например, чтобы сложить дроби , и нужно записать следующее выражение:

Если мы вычислим выражение , то получим дробь , значение которой равно 1,5.

При этом выражение мы можем вернуть в исходное состояние , и вычислить по отдельности каждую дробь, затем сложить полученные частные. Результат по прежнему будет равен 1,5

Тоже самое происходит при делении многочлена на одночлен. Одночлен берёт на себя роль общего знаменателя для всех членов многочлена. Например, при делении многочлена ax + bx + cx на многочлен x , образуется три дроби с общим знаменателем x

Вычисление каждой дроби даст в результате многочлен a + b + c

Пример 2. Разделить многочлен 8m 3 n + 24m 2 n 2 на одночлен 8m 2 n

Пример 3. Разделить многочлен 4c 2 d − 12c 4 d 3 на одночлен −4c 2 d

Деление одночлена на многочлен

Не существует тождественного преобразования, позволяющего разделить одночлен на многочлен.

Допустим, мы захотели разделить одночлен 2xy на многочлен 5x + 3y + 5 .

Результатом этого деления должен быть многочлен, перемножение которого с многочленом 5x + 3y + 5 даёт одночлен 2xy . Но не существует многочлена, перемножение которого с многочленом 5x + 3y + 5 давало бы в результате одночлен 2xy , поскольку перемножение многочленов даёт в результате многочлен, а не одночлен.

Но в учебниках можно встретить задания на нахождение значения выражения при заданных значениях переменных. В исходных выражениях таких заданий бывает выполнено деление одночлена на многочлен. В этом случае никаких преобразований выполнять не нужно. Достаточно подставить значения переменных в исходное выражение и вычислить получившееся числовое выражение.

Например, найдём значение выражения при x = 2 .

Выражение представляет собой деление одночлена на многочлен. В данном случае мы не сможем выполнить какие-либо преобразования. Единственное, что мы сможем сделать — это подставить число 2 в исходное выражение вместо переменной x и найти значение выражения:

Деление многочлена на многочлен

Если первый многочлен умножить на второй многочлен, получается третий многочлен. Например, если умножить многочлен x + 5 на многочлен x + 3 , получается многочлен x 2 + 8x + 15

Если произведение разделить на множитель, то получится множимое. Это правило распространяется не только для чисел, но и для многочленов.

Тогда согласно этому правилу, деление полученного нами многочлена x 2 + 8x + 15 на многочлен x + 3 должно давать в результате многочлен x + 5 .

Деление многочлена на многочлен выполняется уголком. Отличие будет в том, что при делении многочленов не нужно определять первое неполное делимое, как в случае деления обычных чисел.

Выполним уголком деление многочлена x 2 + 8x + 15 на многочлен x + 3 . Так мы поэтапно увидим, как получается многочлен x + 5 .

В данном случае результат нам известен заранее. Это будет многочлен x + 5 . Но чаще всего результат бывает неизвестным. Поэтому решение будем комментировать так, будто результат нам неизвестен.

Результатом деления должен быть новый многочлен. Члены этого многочлена будут появляться один за другим в процессе деления.

Сейчас наша задача найти первый член нового многочлена. Как это сделать?

Когда мы изначально перемножали многочлены x + 5 и x + 3 , мы сначала умножили первый член первого многочлена на первый член второго многочлена. Тем самым мы получили первый член третьего многочлена:

Если мы обратно разделим первый член третьего многочлена на первый член второго многочлена, то получим первый член первого многочлена. А это то, что нам нужно. Ведь мы должны прийти к многочлену x + 5 .

Этот же принцип нахождения первого члена будет выполняться и при решении других задач на деление многочленов.

Итак, чтобы найти первый член нового многочлена, нужно первый член делимого разделить на первый член делителя.

Если первый член делимого (в нашем случае это x 2 ) разделить на первый член делителя (это x), получится x. То есть первым членом нового многочлена является x. Записываем его под правым углом:

Теперь, как и при делении обычных чисел, умножаем x на делитель x + 3 . На этом этапе нужно суметь умножить одночлен на многочлен. При умножении x на x + 3 , получается x 2 + 3x . Записываем этот многочлен под делимым x 2 + 8x+ 15 так, чтобы подобные члены располагались друг под другом:

Теперь из делимого x 2 + 8x + 15 вычитаем x 2 + 3x . Подобные члены вычитаем из подобных им членов. Если из x 2 вычесть x 2 , получится 0 . Ноль не записываем. Далее если из 8x вычесть 3x , получится 5x . Записываем 5x так, чтобы этот член оказался под членами 3x и 8x

Теперь, как и при делении обычных чисел, сносим следующий член делимого. Следующий член это 15. Сносить его нужно вместе со своим знаком:

Теперь делим многочлен 5x + 15 на x + 3 . Для этого нужно найти второй член нового многочлена. Чтобы его найти, нужно первый член делимого (сейчас это член 5x ) разделить на первый член делителя (это член x ). Если 5x разделить на x , получится 5. То есть вторым членом нового многочлена является 5. Записываем его под правым углом, вместе со своим знаком (член 5 в данном случае положителен)

Теперь умножаем 5 на делитель x + 3 . При умножении 5 на x + 3 , получается 5x + 15 . Записываем этот многочлен под делимым 5x + 15

Теперь из делимого 5x + 15 вычитаем 5x + 15 . Если из 5x + 15 вычесть 5x + 15 получится 0.

На этом деление завершено.

После выполнения деления можно выполнить проверку, умножив частное на делитель. В нашем случае, если частное x + 5 умножить на делитель x + 3 , должен получаться многочлен x 2 + 8x + 15

Пример 2. Разделить многочлен x 2 − 8x + 7 на многочлен x − 7

Записываем уголком данное деление:

Находим первый член частного. Разделим первый член делимого на первый член делителя, получим x . Записываем x под правым углом:

Умножаем x на x − 7 , получаем x 2 − 7x . Записываем этот многочлен под делимым x 2 − 8x + 7 так, чтобы подобные члены располагались друг под другом:

Вычитаем из x 2 − 8x + 7 многочлен x 2 − 7x . При вычитании x 2 из x 2 получается 0 . Ноль не записываем. А при вычитании −7x из −8x получается −x , поскольку −8x − (−7x) = −8x + 7x = −x . Записываем −x под членами −7x и −8x . Далее сносим следующий член 7

Следует быть внимательным при вычитании отрицательных членов. Часто на этом этапе допускаются ошибки. Если на первых порах вычитание в столбик даётся тяжело, то можно использовать обычное вычитание многочленов в строку, которое мы изучили ранее. Для этого нужно отдельно выписать делимое и вычесть из него многочлен, который под ним располагается. Преимущество этого метода заключается в том, что следующие члены делимого сносить не нужно — они автоматически перейдут в новое делимое. Давайте воспользуемся этим методом:

Вернёмся к нашей задаче. Разделим многочлен −x + 7 на x − 7 . Для этого нужно найти второй член частного. Чтобы его найти, нужно первый член делимого (сейчас это член −x ) разделить на первый член делителя (это член x ). Если −x разделить на x , получится −1 . Записываем −1 под правым углом вместе со своим знаком:

Умножаем −1 на x − 7 , получаем −x + 7 . Записываем этот многочлен под делимым −x + 7

Теперь из −x + 7 вычитаем −x + 7 . Если из −x + 7 вычесть −x + 7 получится 0

Деление завершено. Таким образом, частное от деления многочлена x 2 − 8x + 7 на многочлен x − 7 равно x − 1

Выполним проверку. Умножим частное x − 1 на делитель x − 7 . У нас должен получиться многочлен x 2 − 8x + 7

Пример 3. Разделить многочлен x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3

Найдём первый член частного. Разделим первый член делимого на первый член делителя, получим x 4

Умножаем x 4 на делитель x 2 + x 3 и полученный результат записываем под делимым. Если x 4 умножить на x 2 + x 3 получится x 6 + x 7 . Члены этого многочлена записываем под делимым так, чтобы подобные члены располагались друг под другом:

Теперь из делимого вычитаем многочлен x 6 + x 7 . Вычитание x 6 из x 6 даст в результате 0. Вычитание x 7 из x 7 тоже даст в результате 0. Оставшиеся члены 2x 4 и 2x 5 снесём:

Получилось новое делимое 2x 4 + 2x 5 . Это же делимое можно было получить, выписав отдельно многочлен x 6 + 2x 4 + x 7 + 2x 5 и вычтя из него многочлен x 6 + x 7

Разделим многочлен 2x 4 + 2x 5 на делитель x 2 + x 3 . Как и раньше сначала делим первый член делимого на первый член делителя, получим 2x 2 . Записываем этот член в частном:

Умножаем 2x 2 на делитель x 2 + x 3 и полученный результат записываем под делимым. Если 2x 2 умножить на x 2 + x 3 получится 2x 4 + 2x 5 . Записываем члены этого многочлена под делимым так, чтобы подобные члены располагались друг под другом. Затем выполним вычитание:

Вычитание многочлена 2x 4 + 2x 5 из многочлена 2x 4 + 2x 5 дало в результате 0, поэтому деление успешно завершилось.

В промежуточных вычислениях члены нового делимого располагались друг от друга, образуя большие расстояния. Это было по причине того, что при умножении частного на делитель, результаты были записаны так, чтобы подобные члены располагались друг под другом.

Эти расстояния между членами нового делимого образуются тогда, когда члены исходных многочленов расположены беспорядочно. Поэтому перед делением желательно упорядочить члены исходных многочленов в порядке убывания степеней. Тогда решение примет более аккуратный и понятный вид.

Решим предыдущий пример, упорядочив члены исходных многочленов в порядке убывания степеней. Если члены многочлена x 6 + 2x 4 + x 7 + 2x 5 упорядочить в порядке убывания степеней, то получим многочлен x 7 + x 6 + 2x 5 + 2x 4 . А если члены многочлена x 2 + x 3 упорядочить в порядке убывания степеней, то получим многочлен x 3 + x 2

Тогда деление уголком многочлена x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3 примет следующий вид:

Деление завершено. Таким образом, частное от деления многочлена x 6 + 2x 4 + x 7 + 2x 5 на многочлен x 2 + x 3 равно x 4 + 2x 2

Выполним проверку. Умножим частное x 4 + 2x 2 на делитель x 2 + x 3 . У нас должен получиться многочлен x 6 + 2x 4 + x 7 + 2x 5

При перемножении многочленов члены исходных многочленов тоже желательно упорядочивать в порядке убывания степеней. Тогда члены полученного многочлена тоже будут упорядочены в порядке убывания степеней.

Перепишем умножение (x 4 + 2x 2 )(x 2 + x 3 ) упорядочив члены многочленов в порядке убывания степеней.

Пример 4. Разделить многочлен 17x 2 − 6x 4 + 5x 3 − 23x + 7 на многочлен 7 − 3x 2 − 2x

Упорядочим члены исходных многочленов в порядке убывания степеней и выполним уголком данное деление:

Пример 5. Разделить многочлен 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4 на многочлен a 2 − 3ab − 9b 2

Найдем первый член частного. Разделим первый член делимого на первый член делителя, получим 4a 2 . Записываем 4a 2 в частном:

Умножим 4a 2 на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым:

Вычтем из делимого полученный многочлен 4a 4 − 12a 3 b − 36a 2 b 2

Теперь делим −2a 3 b + 12a 2 b 2 − 54b 4 на делитель a 2 − 3ab − 9b 2 . Разделим первый член делимого на первый член делителя, получим −2ab . Записываем −2ab в частном:

Умножим −2ab на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым −2a 3 b + 12a 2 b 2 − 54b 4

Вычтем из многочлена −2a 3 b + 12a 2 b 2 − 54b 4 многочлен −2a 3 b + 12a 2 b 2 − 18ab 3 . При вычитании подобных членов обнаруживаем, что члены −54b 4 и 18ab 3 не являются подобными, а значит их вычитание не даст никакого преобразования. В этом случае выполняем вычитание там где это можно, а именно вычтем −2a 3 b из −2a 3 b и 6a 2 b 2 из 12a 2 b 2 , а вычитание 18ab 3 из −54b 4 запишем в виде разности −54b 4 − (+18ab 3 ) или −54b 4 − 18ab 3

Этот же результат можно получить, если выполнить вычитание многочленов в строку с помощью скобок:

Вернёмся к нашей задаче. Разделим 6a 2 b 2 − 54b 4 − 18ab 3 на делитель a 2 − 3ab − 9b 2 . Делим первый член делимого на первый член делителя, получим 6b 2 . Записываем 6b 2 в частном:

Умножим 6b 2 на делитель a 2 − 3ab − 9b 2 и полученный результат запишем под делимым 6a 2 b 2 − 54b 4 − 18ab 3 . Сразу вычтем этот полученный результат из делимого 6a 2 b 2 − 54b 4 − 18ab 3

Деление завершено. Таким образом, частное от деления многочлена 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4 на многочлен a 2 − 3ab − 9b 2 равно 4a 2 − 2ab + 6b 2 .

Выполним проверку. Умножим частное 4a 2 − 2ab + 6b 2 на делитель a 2 − 3ab − 9b 2 . У нас должен получиться многочлен 4a 4 − 14a 3 b − 24a 2 b 2 − 54b 4

Деление многочлена на многочлен с остатком

Как и при делении обычных чисел, при делении многочлена на многочлен может образоваться остаток от деления.

Для начала вспомним деление обычных чисел с остатком. Например, разделим уголком 15 на 2. С остатком это деление будет выполнено так:

То есть при делении 15 на 2 получается 7 целых и 1 в остатке. Ответ записывается следующим образом:

Рациональное число читается как семь целых плюс одна вторая. Знак «плюс» по традиции не записывают. Но если при делении многочлена на многочлен образуется остаток, то этот плюс записывать нужно.

Например, если при делении многочлена a на многочлен b получится частное c , да еще останется остаток q , то ответ будет записан так:

Например, разделим многочлен 2x 3 − x 2 − 5x + 4 на многочлен x − 3

Найдем первый член частного. Разделим первый член делимого на первый член делителя, получим 2x 2 . Записываем 2x 2 в частном:

Умножим 2x 2 на делитель x − 3 и полученный результат запишем под делимым:

Вычтем из делимого полученный многочлен 2x 3 − 6x 2

Теперь делим 5x 2 − 5x + 4 на делитель x − 3 . Разделим первый член делимого на первый член делителя, получим 5x . Записываем 5x в частном:

Умножим 5x на делитель x − 3 и полученный результат запишем под делимым 5x 2 − 5x + 4

Вычтем из многочлена 5x 2 − 5x + 4 многочлен 5x 2 − 15x

Теперь делим 10x + 4 на делитель x − 3 . Разделим первый член делимого на первый член делителя, получим 10 . Записываем 10 в частном:

Умножим 10 на делитель x − 3 и полученный результат запишем под делимым 10x + 4 . Сразу вычтем этот полученный результат из делимого 10x + 4

Число 34, полученное в результате вычитания многочлена 10x − 30 из многочлена 10x + 4 , является остатком. Мы не сможем найти следующий член частного, который при умножении с делителем x − 3 дал бы нам в результате 34 .

Поэтому при делении многочлена 2x 3 − 2x 2 − 5x + 4 на многочлен x − 3 получается 2x 2 + 5x + 10 и 34 в остатке. Ответ записывается таким же образом, как и при делении обычных чисел. Сначала записывается целая часть (она располагается под правым углом) плюс остаток, разделенный на делитель:

Когда деление многочленов невозможно

Деление многочлена на многочлен невозможно в случае, если степень делимого окажется меньше степени делителя.

Например, нельзя разделить многочлен x 3 + x на многочлен x 4 + x 2 , поскольку делимое является многочленом третьей степени, а делитель — многочленом четвёртой степени.

Вопреки этому запрету можно попробовать разделить многочлен x 3 + x на многочлен x 4 + x 2 , и даже получить частное x − 1 , которое при перемножении с делителем будет давать делимое:

Но при делении многочлена на многочлен должен получаться именно многочлен, а частное x − 1 многочленом не является. Ведь многочлен состоит из одночленов, а одночлен в свою очередь это произведение чисел, переменных и степеней. Выражение x − 1 это дробь , которая не является произведением.

Пусть имеется прямоугольник со сторонами 4 и 2

Площадь этого прямоугольника будет равна 4 × 2 = 8 кв.ед.

Увеличим длину и ширину этого прямоугольника на x

Достроим отсутствующие стороны:

Теперь прямоугольник имеет длину x + 4 и ширину x + 2 . Площадь этого прямоугольника будет равна произведению (x + 4)(x + 2) и выражаться многочленом x 2 + 6x + 8

При этом мы можем выполнить обратную операцию, а именно разделить площадь x 2 + 6x + 8 на ширину x + 2 и получить длину x + 4 .

Степень многочлена x 2 + 6x + 8 равна сумме степеней многочленов-сомножителей x + 4 и x + 2 , а значит ни одна из степеней многочленов-сомножителей не может превосходить степень многочлена-произведения. Следовательно, чтобы обратное деление было возможным, степень делителя должна быть меньше степени делимого.

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Деление и умножение многочленов уголком и столбиком

Теорема

Пусть Pk ( x ) , Qn ( x ) – многочлены от переменной x степеней k и n , соответственно, причем k ≥ n . Тогда многочлен Pk ( x ) можно представить единственным способом в следующем виде:
(1) Pk ( x ) = Sk–n ( x ) Qn ( x ) + Un– 1 ( x ) ,
где Sk–n ( x ) – многочлен степени k–n , Un– 1 ( x ) – многочлен степени не выше n– 1 , или нуль.

Доказательство

По определению многочлена:
;
;
;
,
где pi , qi – известные коэффициенты, si , ui – неизвестные коэффициенты.

Введем обозначение:
.
Подставим в (1) :
;
(2) .
Первый член в правой части – это многочлен степени k . Сумма второго и третьего членов – это многочлен степени не выше k – 1 . Приравняем коэффициенты при x k :
pk = sk-n qn .
Отсюда sk-n = pk / qn .

Преобразуем уравнение (2):
.
Введем обозначение: .
Поскольку sk-n = pk / qn , то коэффициент при x k равен нулю. Поэтому – это многочлен степени не выше k – 1 , . Тогда предыдущее уравнение можно переписать в виде:
(3) .

Это уравнение имеет тот же вид, что и уравнение (1), только значение k стало на 1 меньше. Повторяя эту процедуру k–n раз, получаем уравнение:
,
из которого определяем коэффициенты многочлена Un– 1 ( x ) .

Итак, мы определили все неизвестные коэффициенты si , ul . Причем sk–n ≠ 0 . Лемма доказана.

Деление многочленов

Разделив обе части уравнения (1) на Qn ( x ) , получим:
(4) .
По аналогии с десятичными числами, Sk–n ( x ) называется целой частью дроби или частным, Un– 1 ( x ) – остатком от деления. Дробь многочленов, у которой степень многочлена в числителе меньше степени многочлена в знаменателе называется правильной дробью. Дробь многочленов, у которой степень многочлена в числителе больше или равна степени многочлена в знаменателе называется неправильной дробью.

Уравнение (4) показывает, что любую неправильную дробь многочленов можно упростить, представив ее в виде суммы целой части и правильной дроби.

Деление многочленов уголком

По своей сути, целые десятичные числа являются многочленами, у которых переменная равна числу 10 . Например, возьмем число 265847. Его можно представить в виде:
.
То есть это многочлен пятой степени от 10 . Цифры 2, 6, 5, 8, 4, 7 являются коэффициентами разложения числа по степеням числа 10.

Поэтому к многочленам можно применить правило деления уголком (иногда его называют делением в столбик), применяемое к делению чисел. Единственное отличие заключается в том, что, при делении многочленов, не нужно переводить числа больше девяти в старшие разряды. Рассмотрим процесс деления многочленов уголком на конкретных примерах.

Пример деления многочленов уголком

Выделить целую часть дроби и найти остаток от деления:
.

Здесь в числителе стоит многочлен четвертой степени. В знаменателе – многочлен второй степени. Поскольку 4 ≥ 2 , то дробь неправильная. Выделим целую часть, разделив многочлены уголком (в столбик):

Приведем подробное описание процесса деления. Исходные многочлены записываем в левый и правый столбики. Под многочленом знаменателя, в правом столбике, проводим горизонтальную черту (уголок). Ниже этой черты, под уголком, будет целая часть дроби.

1.1 Находим первый член целой части (под уголком). Для этого разделим старший член числителя на старший член знаменателя: .

1.2 Умножаем 2 x 2 на x 2 – 3 x + 5 :
. Результат записываем в левый столбик:

1.3 Берем разность многочленов в левом столбике:

.


Итак, мы получили промежуточный результат:
.

Дробь в правой части неправильная, поскольку степень многочлена в числителе ( 3 ) больше или равна степени многочлена в знаменателе ( 2 ). Повторяем вычисления. Только теперь числитель дроби находится в последней строке левого столбика.
2.1 Разделим старший член числителя на старший член знаменателя: ;

2.2 Умножаем на знаменатель: ;

2.3 И вычитаем из последней строки левого столбика: ;

Промежуточный результат:
.

Снова повторяем вычисления, поскольку в правой части стоит неправильная дробь.
3.1 ;
3.2 ;
3.3 ;

Итак, мы получили:
.
Степень многочлена в числителе правой дроби меньше степени многочлена знаменателя, 1 . Поэтому дробь – правильная.

;
2 x 2 – 4 x + 1 – это целая часть;
x – 8 – остаток от деления.

Пример 2

Выделить целую часть дроби и найти остаток от деления:
.

Выполняем те же действия, что и в предыдущем примере:

Здесь остаток от деления равен нулю:
.

Умножение многочленов столбиком

Также можно умножать многочлены столбиком, аналогично умножению целых чисел. Рассмотрим конкретные примеры.

Пример умножения многочленов столбиком

Найти произведение многочленов:
.

Умножаем многочлены столбиком.

1 Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1 Умножаем младший член второго многочлена на первый многочлен:
.
Результат записываем в столбик.

2.2 Умножаем следующий член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

2.3 Умножаем следующий (старший) член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

3 После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x :
;
;
;
.

Заметим, что можно было записывать только коэффициенты, а степени переменной x можно было опустить. Тогда умножение столбиком многочленов будет выглядеть так:

Пример 2

Найти произведение многочленов столбиком:
.

При умножении многочленов столбиком важно записывать одинаковые степени переменной x друг под другом. Если некоторые степени x пропущены, то их следует записывать явно, умножив на нуль, либо оставлять пробелы.

В этом примере некоторые степени пропущены. Поэтому запишем их явно, умноженными на нуль:
.
Умножаем многочлены столбиком.

1 Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1 Умножаем младший член второго многочлена на первый многочлен:
.
Результат записываем в столбик.

2.2 Следующий член второго многочлена равен нулю. Поэтому его произведение на первый многочлен также равно нулю. Нулевую строку можно не записывать.

2.3 Умножаем следующий член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

2.3 Умножаем следующий (старший) член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

3 После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x :
.

Автор: Олег Одинцов . Опубликовано: 21-05-2015


источники:

http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

http://1cov-edu.ru/mat_analiz/integrali/neopredelennie/ratsionalnye/delenie_mnogochlenov/