Как правильно писать уравнение в столбик

Онлайн калькулятор. Сложение, вычитание, умножение и деление столбиком.

Этот онлайн калькулятор поможет вам понять, как складывать, вычитать, умножать и делить целые числа и десятичные дроби столбиком. Калькулятор сложения, вычитания, умножения и деления столбиком очень просто и быстро вычислит сумму, разность, произведение и частное и выдаст подробное решение задачи.

Калькулятор для сложения, вычитания, умножения и деления столбиком

Ввод данных в калькулятор для сложения, вычитания, умножения и деления столбиком

В онлайн калькулятор можно вводить натуральные числа или десятичные дроби.

Дополнительные возможности калькулятора для сложения, вычитания, умножения и деления столбиком

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Инструкция использования калькулятора для сложения, вычитания, умножения и деления столбиком

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Математика

План урока:

Здравствуйте, ребята! Начнем урок с интересной загадки:

Отгадайте без подсказки

Вы героев этой сказки:

Трое братьев до чего же

Друг на друга все похожи!

Буквенные выражения

Три весёлых поросёнка Ниф-Ниф, Наф-Наф и Нуф-Нуф приглашают нас с вами, ребята, в гости. Посмотрите, какие дома они построили!

Как вы думаете, можно ли вставить в окошки карточки с цифрами? Почему?

В домике Ниф-Нифа в открытом окошке может быть карточка с цифрой 5? Какое выражение можно записать?

А какое выражение запишем, если в доме Нуф-Нуфа в окошке будет цифра 2?

Можно ли в окошке Наф-Нафа увидеть цифру 1? А цифру 3?

С цифрой 1 запишем выражение: 1 – 1.

А вот цифра 3 не подходит, потому что из 1 нельзя вычесть 3.

Запишите получившиеся выражения и найдите их значения.

Мы записали числовые выражения, ведь они содержат только числа.

Ребята, как вы думаете, можно ли в окошко вставить карточку с буквой?

В математике принято использовать латинские буквы. Может быть, вы уже знаете некоторые из них? Давайте, правильно назовем латинские буквы.

В окошки домиков поросят подставим карточки с буквами: x, y, d.

Запишем выражения: x + 4, 6 + y, 1 d.

У нас получились буквенные выражения.

Найдём значение следующих буквенных выражений: 8 + а, d 6, x + 5, y 1.

Для этого вместо буквы подставим число: а = 12, d = 9, x = 14, y = 20.

Найдите значение выражения: k + 20, если k = 3, k = 5, k = 9.

Уравнение. Решение уравнений методом подбора

Ребята, внимательно посмотрите на карточки с цифрами трех поросят. Чья карточка подходит для записи в рамке? Почему?

Подходит карточка с цифрой 8, потому что 8 + 2 = 10.

Вместо окошка запишем латинскую букву х (икс).

Получится запись: х + 2 = 10.

Это уравнение.

Ниф-Ниф просит из чисел 6, 5, 2, 1 подобрать для каждого уравнения такое значение у (игрек), при котором получится верное равенство:

8 + у = 9 12 – у= 10 у + 7 = 12 у – 5 = 1

Мы решили уравнения методом подбора. Обязательно нужно сделать проверку. Для этого вместо у (игрек) подставим в уравнение нужное число и убедимся, что равенство верное.

А теперь задание от Наф-Нафа. Ребята, найдите среди этих записей уравнение и решите его методом подбора.

3 + у 10 – х 14 – 2 b у = 8

Проверка сложения и вычитания

Ребята, по примеру на сложение составьте два примера на вычитание по образцу:

2 + 3 = 5 6 + 1 = 7 9 + 7 = 16

Молодцы! Вспомните, как называются числа при сложении!

Это правило пригодится нам для проверки правильности вычислений.

Например, 2 + 1 = 3

Проверку выполним вычитанием: 3 – 1 = 2 или 3 – 2 = 1.

Выполните самостоятельно сложение и сделайте проверку вычитанием:

17 + 3 76 + 4 20 + 19

Задание от Нуф-Нуфа. Ребята, вспомните, как называются числа при вычитании?

Ребята, выполните вычитание и сделайте проверку сложением:

Выполните вычитание и сделайте проверку, пользуясь правилом:

Письменное сложение и вычитание. Запись столбиком

Ребята. Помогите трем поросятам посчитать!

Веселым поросятам для строительства прочного каменного дома нужно ещё 36 камней. У них уже есть 53 камня. Сколько всего камней нужно для строительства дома?

В этом примере мы к единицам прибавляли единицы, к десяткам прибавляли десятки.

Гораздо удобнее этот пример записать столбиком:

Алгоритм сложения

  • Пишу десятки под десятками, а единицы под единицами.
  • Складываю единицы: 6 плюс 3 будет 9.
  • Пишу под единицами – 9.
  • Складываю десятки: 3 плюс 5 будет 8.
  • Пишу под десятками – 8.
  • Читаю ответ: 89.

Вычитание тоже можно выполнять столбиком:

Алгоритм вычитания

  • Пишу десятки под десятками, а единицы под единицами.
  • Вычитаю единицы: 9 минус 4 будет 5.
  • Пишу под единицами – 5.
  • Вычитаю десятки: 6 минус 3 будет 3.
  • Пишу под десятками – 3.
  • Читаю ответ: 35.

Ребята, веселые поросята записали для вас примеры столбиком. Используя алгоритмы, спишите примеры правильно и вычислите с устным объяснением:

Пока мы с вами решали примеры, в записях наших сказочных поросят кто-то стер некоторые цифры. Помогите восстановить примеры на сложение столбиком. Узнайте, какие числа складывали, какие результаты получились. Подумайте, какая цифра должна стоять на месте звездочки.

Правильный ответ вы найдете в конце урока со значком

Ребята, все ли задания этого урока давались вам легко? Выберите мордочку одного из трёх поросят: Ниф-Нифа, Нуф-Нуфа или Наф-Нафа по своему настроению.

А вы помните, чем закончилась сказка про трех веселых поросят? Они спрятались от волка в крепком каменном доме Наф-Нафа. Крепким бывает не только дом, крепкой бывает дружба! Сообща можно многого добиться, даже если бывает очень трудно.

Напоследок три веселых задачки на смекалку от наших сказочных героев.

Задача от Ниф-Нифа.

Сколько лап и сколько ушей у трех зайцев?

Задача от Нуф-Нуфа.

Сколько клювов и сколько лапок у трех цыплят?

Задача от Наф-Нафа.

Сколько хвостов и сколько ушей у трех котов?

У трех зайцев 12 лап и 6 ушей.

У трех цыплят 3 клюва и 6 лапок.

У трех котов 3 хвоста и 6 ушей.

А вот и правильный ответ!

Ниф-Ниф, Наф-Наф и Нуф-Нуф прощаются с вами, ребята. До новых встреч! Проверьте свои знания, подумайте, что еще не очень хорошо у вас получается.

Кубические уравнения. Метод деления в столбик. Примеры *

Готовиться с нами — ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Определение

Рассмотрим произвольное уравнение вида

\[a_nx^n+a_x^+\dots+a_1x+a_0=0 \qquad \qquad (1)\]

где \(a_n, a_,\dots,a_0\) – некоторые числа, причем \(a_n\ne 0\) , называемое алгебраическим уравнением (с одной переменной) \(n\) -ой степени.

Обозначим \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) . Таким образом, сокращенно уравнение \((1)\) можно записать в виде \(P_n(x)=0\) .

Замечание

Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна \(2\) , а линейное — степень которого равна \(1\) .
Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.

Теорема

Если уравнение \((1)\) имеет корень \(x=x_0\) , то оно равносильно уравнению

где \(P_(x)\) – некоторый многочлен степени \(n-1\) .

Для того, чтобы найти \(P_(x)\) , необходимо найти частное от деления многочлена \(P_n(x)\) на \((x-x_0)\)
(т.к. \(P_n(x)=(x-x_0)\cdot P_(x)\) ).

Следствие: количество корней уравнения

Любое алгебраическое уравнение степени \(n\) может иметь не более \(n\) корней.

Замечание

В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.

Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.

Пример

Известно, что \(x=2\) является корнем уравнения \(2x^3-9x^2+x^4-x+6=0\) . Найдите частное от деления \(2x^3-9x^2+x^4-x+6\) на \(x-2\) .

Решение.
Будем делить многочлен на многочлен в столбик. Запишем

Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала \(x^4\) , затем \(2x^3\) и т.д.
Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
Т.к. делитель \(x-2\) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.

Посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(x^4+2x^3\) полученного многочлена уничтожилось слагаемое \(x^4\,\) .
На \(x^3\) . Тогда после вычитания \(x^4+2x^3-x^3(x-2)\) останется \(4x^3\) . Снесем слагаемое \(-9x^2\) :

Теперь посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(4x^3-9x^2\) полученного многочлена уничтожилось слагаемое \(4x^3\) .
На \(4x^2\) : \(\quad 4x^3-9x^2-4x^2(x-2)=-x^2\) .
Опять снесем следующее слагаемое \(-x\) :

Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть \(-x\)

Четвертое слагаемое в частном должно быть \(-3\) :

Таким образом, можно сказать, что \(x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)\) .

Замечание

1) Если \(x=x_0\) действительно является корнем уравнения, то после такого деления в остатке должен быть \(0\) . В противном случае это означает, что деление в столбик выполнено неверно.

2) Если многочлен делится без остатка (то есть остаток равен \(0\) ) на \(x+a\) , то он также будет делиться без остатка на \(c(x+a)\) для любого числа \(c\ne 0\) . Например, в нашем случае, если бы мы поделили многочлен, к примеру, на \(2x-4\) , то получили бы в частном \(\frac12 x^3+2x^2-\frac12x-\frac32\) .
Заметим, что также происходит и с числами: если мы разделим \(10\) на \(2\) , то получим \(5\) ; а если разделим \(10\) на \(3\cdot 2\) , то получим \(\frac53\) .

3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения \(x^4+2x^3-9x^2-x+6=0\) , необходимо найти корни уравнения \(x^3+4x^2-x-3=0\) .
Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.

Теорема

Если число \(x=1\) является корнем уравнения \((1)\) , то сумма всех коэффициентов уравнения равна нулю:

Доказательство

Действительно, так как \(x=1\) является корнем уравнения \((1)\) , то после подстановки \(x=1\) в него мы получим верное равенство. Так как \(1\) в любой степени равен \(1\) , то слева мы действительно получим сумму коэффициентов \(a_i\) , которая будет равна нулю.

Пример

У уравнения \(x^2-6x+5=0\) сумма коэффициентов равна нулю: \(1-6+5=0\) . Следовательно, \(x=1\) является корнем этого уравнения. Это можно проверить просто подстановкой: \(1^2-6\cdot 1+5=0\quad\Leftrightarrow\quad 0=0\) .

Теорема

Если число \(x=-1\) является корнем уравнения \((1)\) , то сумма коэффициентов при четных степенях \(x\) равна сумме коэффициентов при нечетных степенях \(x\) .

Доказательство

1) Пусть \(n\) – четное. Подставим \(x=-1\) :

\(a_n\cdot (-1)^n+a_\cdot (-1)^+a_\cdot (-1)^+\dots+a_1\cdot (-1)+a_0=0 \quad\Rightarrow\) \(a_n-a_+a_-\dots-a_1+a_0=0 \quad \Rightarrow\) \(a_n+a_+\dots+a_0=a_+a_+\dots+a_1\)

2) Случай, когда \(n\) – нечетное, доказывается аналогично.

Пример

В уравнении \(x^3+2x^2-8x+5=0\) сумма коэффициентов равна нулю:

Значит, число \(x=1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3+2x^2-8x+5\) на \(x-1\) :

\[\begin x^3+2x^2-8x+5&&\negthickspace\underline<\qquad x-1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 + 3x -5\\[-3pt] 3x^2 — 8x\,\phantom<000>&&\\ \underline<3x^2 - 3x\,>\phantom<000>&&\\[-3pt] -5x + 5&&\\ \underline<-5x +5>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2+3x-5=0\) .

Таким образом мы нашли все корни исходного уравнения.

Пример

В уравнении \(x^3-x^2+x+3=0\) сумма коэффициентов при четных степенях \(-1+3=2\) , а при нечетных: \(1+1=2\) . Таким образом, число \(x=-1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3-x^2+x+3\) на \(x+1\) :

\[\begin x^3-\,x^2+ \ x+3\phantom<0>&&\negthickspace\underline<\qquad x+1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 -2x +3\\[-3pt] -2x^2 + x\phantom<0000>&&\\ \underline<-2x^2 -\! 2x>\,\phantom<000>&&\\[-3pt] 3x + 3&&\\ \underline<3x +3>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3-x^2+x+3=(x+1)(x^2 — 2x +3)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2-2x+3=0\) .
Но это уравнение не имеет корней ( \(D ), значит, исходное уравнение имеет всего один корень \(x=-1\) .

Замечание

Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.

Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.

Теорема

Если алгебраическое уравнение

\[a_nx^n+a_x^+\dots+a_1x+a_0=0,\] где \(a_n, \dots, a_0\) — целые числа,
имеет рациональный корень \(x=\dfrac pq\) , то число \(p\) является делителем свободного члена \(a_0\) , а число \(q\) — делителем старшего коэффициента \(a_n\) .

Пример

Рассмотрим уравнение \(2x^4-5x^3-x^2-5x-3=0\) .

В данном случае \(a_0=-3, a_n=2\) . Делители числа \(-3\) — это \(\pm 1, \pm 3\) . Делители числа \(2\) – это \(\pm 1, \pm 2\) . Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:

\[\pm 1, \ \pm \dfrac12, \ \pm 3, \ \pm\dfrac32\]

По предыдущим теоремам можно быстро понять, что \(\pm1\) не являются корнями. Подставив \(x=-\dfrac12\) в уравнение, получим:

\[2\cdot \dfrac1<16>+5\cdot \dfrac18-\dfrac 14+5\cdot \dfrac12-3=0 \quad \Leftrightarrow \quad 0=0\]

Значит, число \(x=-\frac12\) является корнем уравнения.

Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения \(x=3\) . Значит, уравнение можно представить в виде

\[\left(x+\frac12\right)(x-3)\cdot Q_2(x)=0 \quad \text<или>\quad (2x+1)(x-3)\cdot P_2(x)=0\] (тогда \(P_2(x)=\frac12 Q_2(x)\) ). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.

После деления в столбик \(2x^4-5x^3-x^2-5x-3\) на \((2x+1)(x-3)=2x^2-5x-3\) :

получим, что \(P_2(x)=x^2+1\) . Данный многочлен не имеет корней, значит, уравнение имеет только два корня: \(x=-\frac12\) и \(x=3\) .

Замечание

Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
Например, уравнение \(x^3-2=0\) имеет корень — это \(x=\sqrt[3]2\) , и он не рациональный.
Для подбора иррациональных корней не существует универсального алгоритма.

Пример

Найдите корни уравнения \(4x^3-3x^2-\frac<23>6x-1=0\) .

Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при \(x\) равен \(-\frac<23>6\) ). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на \(6\) :

\[24x^3-18x^2-23x-6=0\]
Делители свободного члена: \(\pm 1, \pm 2, \pm 3, \pm 6\) .
Делители старшего коэффициента: \(\pm 1, \pm 2, \pm 3, \pm4, \pm 6, \pm 8, \pm 12, \pm 24\) .
Получилось достаточно много \(:)\)
Выпишем некоторые возможные рациональные корни уравнения:

\[\pm 1, \ \pm \dfrac12, \ \pm \dfrac13, \ \pm \dfrac 16, \ \pm\dfrac18, \ \pm2, \ \pm\dfrac23, \ \pm \dfrac14, \ \pm3\quad \text<\small<и т.д.>>\]

Перебирая варианты, убеждаемся, что \(\frac32\) подходит. Значит, многочлен \(24x^3-18x^2-23x-6\) должен без остатка поделиться на \(x-\frac32\) . Для удобства разделим на \(2(x-\frac32)=2x-3\) (чтобы не работать с дробями):

Таким образом, \(24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)\) . Уравнение \(12x^2 +9x +2=0\) в свою очередь корней не имеет. Значит, \(x=\frac32\) – единственный корень исходного уравнения.

Теорема

Любой многочлен \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) можно разложить на произведение множителей: линейных ( \(ax+b, a\ne 0\) ) и квадратичных ( \(cx^2+px+q, c\ne 0\) ) с отрицательным дискриминантом.

Следствие

Кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как

Замечание

На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше \(4\) .

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.


источники:

http://100urokov.ru/predmety/vychislenie-stolbikom

http://shkolkovo.net/theory/kubicheskie_uravneniya_metod_deleniya_v_stolbik_algebraicheskie_uravneniya_stepeni_n_primery