Как преобразовывать уравнения в алгебре

Равносильные уравнения

Два или более уравнений называются равносильными, если они имеют одни и те же корни. Например, уравнения:

равносильные, потому что имеют одни и те же корни (2 и 1 — это можно проверить подстановкой).

Уравнения, не имеющие корней, также считаются равносильными.

Преобразование уравнений

Если одно уравнение заменяется другим уравнением, равносильным данному, то такая замена называется преобразованием уравнения. Например, уравнение

можно преобразовать в такое:

Если одно уравнение заменяется другим, равносильным данному и при этом более простым, то такое преобразование называется упрощением уравнения. Например, упростим следующее уравнение:

заменив его равносильным уравнением

Все преобразования уравнений основаны на двух свойствах равенств, и следствиях, которые вытекают из данных свойств.

Если к обеим частям уравнения прибавить или отнять одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.

Рассмотрим уравнение x — 5 = 7. Прибавив к обеим частям уравнения число 5

получим уравнение x = 12. Если в уравнение x — 5 = 7 вместо x подставить число 12, то можно удостовериться, что, прибавив к обеим частям уравнения число 5, мы не только получили равносильное уравнение, но и нашли его корень.

Из данного свойства можно вывести три следствия:

    Если в обеих частях уравнения есть одинаковые члены с одинаковыми знаками, то эти члены можно опустить (сократить).

Возьмём уравнение x + 13 = 10 + 13. Отняв от обеих частей по 13, получим

Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Рассмотрим уравнение 5x — 4 = 12 + x. Прибавим к обеим частям уравнения по 4:

5x — 4 + 4 = 12 + x + 4.

то есть член 4 перешёл в другую часть с обратным знаком. Теперь вычтем из обеих частей уравнения 5x — 4 = 12 + x по x:

то есть член x перешёл в другую часть с обратным знаком.

Знаки всех членов уравнения можно заменить на противоположные.

Перенесём все члены левой части уравнения 5x — 4 = 12 + x в правую, а все члены правой в левую:

И, учитывая, что части любого равенства ( в том числе и любого уравнения) можно менять местами, то, поменяв левую часть с правой, получим:

то есть получилось, что мы просто заменили знаки всех членов уравнения на противоположные.

Данное преобразование можно также рассматривать как умножение обеих частей уравнения на -1.

Если обе части уравнения умножить или разделить на одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.

Рассмотрим уравнение 3x = 12. Разделив обе части уравнения на число 3:

получим уравнение x = 4. Если в уравнение 3x = 12 вместо x подставить число 4, то можно удостовериться, что, разделив обе части уравнения на 3, мы не только получили равносильное уравнение, но и нашли его корень.

Из данного свойства можно вывести два следствия:

    Если все члены уравнения имеют общий множитель, то можно разделить на него все члены уравнения, таким образом, упростив его.

Возьмём уравнение 16x + 8 = 40. Разделив все члены на общий множитель 8, получим:

Если в уравнении есть дробные члены, то от них можно освободить уравнение, приведя все члены к одному знаменателю и затем отбросить его.

x +12 — x=26 — x.
42

После приведения всех членов к общему знаменателю получим:

4x+12 — x=2(26 — x).
444

Теперь, умножив все члены уравнения на 4, или, что то же самое, просто отбросив знаменатель, получим:

Общие методы преобразования уравнений

Разделы: Математика

Цели и задачи урока:

  • обобщить и углубить знания по теме;
  • сформировать представление о методах и способах решения алгебраических уравнений на уровне, превышающем уровень государственных образовательных стандартов;
  • формирование навыков умственного труда;
  • развивать качества мышления: гибкость, рациональность, критичность;
  • развитие внимания, логического мышления, аргументированной математической речи, самостоятельности, познавательной активности;
  • воспитание ответственности, воли, упорства в достижении поставленной цели, умение контролировать внимание на всех этапах урока.

Оборудование: кодоскоп, слайды, доклады-сообщения учащихся.

Тип урока: урок формирования знаний, умений и навыков.

Формы обучения: общеклассная, групповая, индивидуальная.

Методы обучения: словесный, наглядный, практические задания, самостоятельная деятельность, проблемно-поисковый.

I. Организационный момент

Мотивационная беседа с учащимися пропедевтической направленности через осознание ими практической значимости изучаемых и применяемых знаний, умений и навыков.

Эпиграф урока: «Час, затраченный на понимание, экономит год жизни». (В. Босс)

II. Актуализация опорных знаний учащихся

1. Работа по основным определениям, понятиям, относящимся к уравнениям (вопросы, составленные на основе курса лекций 1-4 «Уравнения и неравенства в школьном курсе математики» автора П.В. Чулкова, М. Шабунин «Уравнения» – библиотека приложения к газете 1 сентября, дополнительные главы по курсу математики 10 под редакцией З.А. Скопеца);

2. Ответить на вопросы:

– Верно ли, что 5х = 10 х 2 = 8 на множестве действительных чисел, на множестве рациональных чисел?
– Верно ли, что 2х = 10 5х = х 2 ?

3. Алгоритм решения уравнения или как мы решаем уравнения?

III. Решение уравнений

Рассмотрим наиболее часто встречаемые преобразования уравнений.

а) разложение на множители (или расщепление уравнений):

1. х 3 – 4х 2 – 16х + 64 = 0
(х 3 – 4х 2 ) – (16х – 64) = 0
х 2 (х – 4) – 16(х – 4) = 0
(х – 4)(х 2 – 16) = 0
(х – 4) 2 (х + 4) = 0
х1 = 4 или х2 = – 4

2. х 3 + х – 10 = 0 (заслушать предлагаемые учащимися способы)
х 3 + х – 8 – 2 = 0
(х 3 – 8) + (х – 2) = 0
(х – 2)(х 2 + 2х + 4) + (х – 2) = 0
(х – 2)( х 2 + 2х + 5) = 0
(х – 2) = 0 или х 2 + 2х + 5= 0
х1 = 2 т.к. D = –16 2 + х + 1)(х 2 + х + 2) = 12 (Заслушать предлагаемые учащимися способы. Очевидно, что ученики предложат выполнить умножение многочлена на многочлен)

– А какова степень уравнения? А нет ли более рационального способа решения? Посмотрите, как «звучит» способ в заголовке? Что вы заметили?

Возможны варианты: x 2 + x = t или x 2 + x + 1 = t

Пусть x 2 + x + 1 = t
Тогда t (t + 1) = 12
t 2 + t – 12 = 0, получаем t1 = – 4; t2 = 3.
Отсюда: х 2 + х + 1 = – 4 или х 2 + х + 1 = 3
х 2 + х + 5 = 0 х 2 + х – 2 = 0
т.к. D = –19 0 корней нет.
Т.к. сумма коэффициентов a + b + c = 0, то х1 = 1; х2 = c/a х2 = – 2

2. Используйте этот приём для решения следующего уравнения:

; ОДЗ: х =/= 0, х =/= – 4, х =/= – 2.
Запишем уравнение иначе:
Пусть x 2 + 4x = t, тогда
Получим: 1 . 5(t + 4) – 1 . t . 5 = 4 . t . (t + 4)
5t + 20 – 5t = 4t 2 + 16t
4t 2 + 16t – 20 = 0
t 2 + 4t – 5 = 0 D = 36 > 0 2 корня. По сумме коэффициентов: 1 + 4 – 5 = 0 имеем: t1 = 1; t2 = c/a t2 = – 5. Оба корня принадлежат ОДЗ уравнения с переменной t.
Отсюда: x 2 + 4x = 1 или x 2 + 4x = – 5
x 2 + 4x – 1 = 0 x 2 + 4x + 5 = 0
D = 20 > 0 2 корня т.к. D = – 4 2 + 3х + 3)(х 2 – 2х + 3) = 24х 2

(Посмотреть на реакцию учащихся)
Для введения новой переменной «мешает» х 2 в правой части, нет никакого смысла применять замену х 2 = t. Как же преобразовать уравнение? Причём так преобразовать, чтобы правая часть не содержала х 2 . (как в уравнении 1) этого метода) Выслушать мнение учащихся. Достаточно разделить почленно уравнение на х 2 , т.к. х = 0 не является корнем данного уравнения!

(х 2 + 3х + 3)(х 2 – 2х + 3) = 24х 2 х 2 =/= 0

Вот теперь пусть , тогда (t + 3)(t – 2) = 24
t 2 + t – 30 = 0, получаем: t1 = – 6; t2 = 5.
Отсюда: = – 6 или = 5
х 2 + 6х + 3 = 0 или х 2 – 5х + 3 = 0
D = 24 > 0 2 корня D = 13 > 0 2 корня

Ответ: ; .

4. А вот ещё одно очень интересное уравнение:

–1 и + 3 можно представить в виде сумм, одно из слагаемых которых будет 1 : – 1 = – 2 + 1 и 3 = 2 + 1.
Тогда х – 1 = х – 2 + 1 = (х + 1) – 2
х + 3 = х + 2 + 1 = (х + 1) + 2, получим уравнение:
((х +1) – 2) 4 + ((х +1) + 2) 4 = 82, пусть х + 1 = t,
Тогда (t – 2) 4 + (t + 2) 4 = 82.

На первый взгляд, новое уравнение не отличается принципиально от данного: мы получили четвёртую степень двучлена, но вторые слагаемые двучлена отличаются только знаками, что намного упрощает конечный вид и преобразования полученного уравнения.

В результате преобразований получается биквадратное уравнение относительно переменной t: t 4 + 24 t 2 – 25 = 0; пусть t 2 = y, тогда y 2 + 24y – 25 = 0

Корни этого уравнения 1 и – 25.
Отсюда: t 2 = 1 или t 2 = – 25
t1,2 = ± ( n + a1x n – 1 + a2x n – 2 + …+ a2x 2 + a1x + a0 = 0, где коэффициенты членов, равноотстоящих от концов, равны между собой, называют симметрическими уравнениями.

Свойства симметрических уравнений:

а) если дано уравнение нечётной степени, то х = – 1 – корень уравнения;
б) уравнение чётной степени 2n с помощью подстановки v = x + 1/x сводится к уравнению степени n.

Рассмотрим решение на конкретном уравнении:

2х 5 + 5х 4 – 13х 3 – 13х 2 + 5х + 2 = 0 да, по определению это симметрическое уравнение нечётной степени. Значит х = – 1 – корень исходного уравнения; разложим его на множители:
(х + 1)(2х 4 + 3х 3 – 16х 2 + 3х + 2) = 0;
работаем со вторым множителем:
2х 4 + 3х 3 – 16х 2 + 3х + 2 = 0 ¦: х2 =/= 0 2х 2 + 3х – 16 + 3 . 1/х + 2 . 1/х 2 = 0.
Группируем: 2(х 2 + 1/х 2 ) + 3(х + 1/х) – 16 = 0. Пусть х + 1/х =, тогда х 2 + 1/х 2 = t 2 – 2,
отсюда: 2(t 2 – 2) + 3t – 16 = 0 и далее 2t 2 + 3t – 20 = 0,
решая это уравнение, получим: t1= – 4 и t2 = – 5/2; откуда х + 1/х = – 4 или х + 1/х = – 5/2.
Решая эти уравнения, получим: х1,2 = – 2 ± , х3 = 2, х4 = 1/2.

Ответ: – 1, – 2 ± , 2, 1/2.

2. Определение. Уравнение вида a0(u(x)) n + a1(u(x)) n – 1 v(x) + a2(u(x)) n – 2 (v(x)) 2 +…+ ak(u(x)) n – k (v(x)) k +…+ a0(v(x)) n = 0 называют однородным уравнением степени n относительно u(x) иv(x).

Решите уравнение: (х – 2) 2 (х + 1) 2 – (х – 2)(х 2 – 1) – (х – 1) 2 = 0
Пусть u = (х – 2)(х + 1) и v = х – 1, получаем: u 2 – uv – 2v 2 = 0.
Рассмотрим все возможные случаи:

а) v = 0, тогда х = 1, но 1 не является корнем исходного уравнения (была проверка!);
б) v =/= 0, тогда заменой p = u/v получаем уравнение: p 2 – p – 2 = 0, откуда p1 = –1, p2 = 2. т.е.
Решаем эти уравнения, получаем: х1 = 0; х2 = 3; х3,4 = + .

Ответ: 0; 3; + .

VI. Итог урока

Рефлексия: беседа с учащимися о занятии, что необходимо школьнику, чтобы заметить тот или иной приём, рациональный в данном конкретном случае, что было трудно, какой приём требуется ещё повторить?

VII. Домашнее задание:

Решите уравнения:

  • х 4 + (1 – х) 4 = 1/8;
  • (х + 2)(х – 3)(х – 1)(х + 6) = 40х 2
  • х 2 (х – 1) 2 + х(х 2 – 1) = 2(х + 1) 2 .

Проверочная работа.

1) Равносильны ли уравнения

2) Какое из двух уравнений является следствием другого: х 2 = 9 или х = 3?

3) Решите уравнения:

  1. х 3 – 6х 2 + 11х – 6 = 0;
  2. х 6 – 9х 3 + 8 = 0;
  3. (х 2 – 6х) 2 – 2(х – 3) 2 = 81;
  4. х(х + 3)(х + 5)(х + 8) = 10;
  5. х 4 – 4х 3 + 5х 2 – 4х + 1 = 0;
  6. ;
  7. (х 2 + х + 4) 2 + 8х(х 2 + х + 4) + 15х 2 = 0;
  8. .

1) нет,
2) первое,
3)

  1. 1; 2; 3,
  2. 1; 2,
  3. 3; 3 + 2,
  4. – 4 +,
  5. ,
  6. 0,
  7. – 2; – 3 +,
  8. 7 +.

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.


источники:

http://urok.1sept.ru/articles/578198

http://zaochnik.com/spravochnik/matematika/systems/ravnosilnye-uravnenija-preobrazovanie-uravnenij/