Как преобразовывать уравнения в многочлен

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Упрощение многочлена.
Умножение многочленов.

С помощью данной математической программы вы можете упростить многочлен.
В процессе работы программа:
— умножает многочлены
— суммирует одночлены (приводит подобные)
— раскрывает скобки
— возводит многочлен в степень

Программа упрощения многочленов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы вы могли проконтролировать свои знания по математике и/или алгебре.

Данная программа может быть полезна учащимся общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Немного теории.

Произведение одночлена и многочлена. Понятие многочлена

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\( 5a^4 — 2a^3 + 0,3a^2 — 4,6a + 8 \)
\( xy^3 — 5x^2y + 9x^3 — 7y^2 + 6x + 5y — 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\( 8b^5 — 2b \cdot 7b^4 + 3b^2 — 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\( 8b^5 — 2b \cdot 7b^4 + 3b^2 — 8b + 0,25b \cdot (-12)b + 16 = \)
\( = 8b^5 — 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\( 8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида.

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \( 12a^2b — 7b \) имеет третью степень, а трехчлен \( 2b^2 -7b + 6 \) — вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\( 5x — 18x^3 + 1 + x^5 = x^5 — 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки — это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\( 9a^2b(7a^2 — 5ab — 4b^2) = \)
\( = 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\( = 63a^4b — 45a^3b^2 — 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \( (a + b)^2, \; (a — b)^2 \) и \( a^2 — b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \( (a + b)^2 \) — это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \( (a + b)^2, \; (a — b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\( (a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\( = a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\( (a + b)^2 = a^2 + b^2 + 2ab \) — квадрат суммы равен сумме квадратов и удвоенного произведения.

\( (a — b)^2 = a^2 + b^2 — 2ab \) — квадрат разности равен сумме квадратов без удвоенного произведения.

\( a^2 — b^2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Тождественные преобразования многочленов

Возведение двучлена в степень

Двучлен — это многочлен, состоящий из двух членов. В прошлых уроках мы возводили двучлен во вторую и третью степень, тем самым получили формулы сокращенного умножения:

Но двучлен можно возводить не только во вторую и третью степень, но и в четвёртую, пятую или более высокую степень.

К примеру, возведём двучлен a + b в четвертую степень:

Представим это выражение в виде произведения двучлена a + b и куба этого же двучлена

Сомножитель (a + b) 3 можно заменить на правую часть формулы куба суммы двух выражений. Тогда получим:

А это обычное перемножение многочленов. Выполним его:

То есть при возведении двучлена a + b в четвертую степень получается многочлен a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4

Возведение двучлена a + b в четвертую степень можно выполнить ещё и так: представить выражение (a + b) 4 в виде произведения степеней (a + b) 2 (a + b) 2

Но выражение (a + b) 2 равно a 2 + 2ab + b 2 . Заменим в выражении (a + b) 2 (a + b) 2 квадраты суммы на многочлен a 2 + 2ab + b 2

А это опять же обычное перемножение многочленов. Выполним его. У нас получится тот же результат, что и раньше:

Возведение трёхчлена в степень

Трёхчлен — это многочлен, состоящий из трёх членов. Например, выражение a + b + c является трёхчленом.

Иногда может возникнуть задача возвести трёхчлен в степень. Например, возведём в квадрат трехчлен a + b + c

Два члена внутри скобок можно заключить в скобки. К примеру, заключим сумму a + b в скобки:

В этом случае сумма a + b будет рассматриваться как один член. Тогда получается, что в квадрат мы возводим не трёхчлен, а двучлен. Сумма a + b будет первым членом, а член c — вторым членом. А как возводить в квадрат двучлен мы уже знаем. Для этого можно воспользоваться формулой квадрата суммы двух выражений:

Применим эту формулу к нашему примеру:

Таким же способом можно возвести в квадрат многочлен, состоящий из четырёх и более членов. Например, возведем в квадрат многочлен a + b + c + d

Представим многочлен в виде суммы двух выражений: a + b и c + d . Для этого заключим их в скобки:

Теперь воспользуемся формулой квадрата суммы двух выражений:

Выделение полного квадрата из квадратного трёхчлена

Ещё одно тождественное преобразование, которое может пригодиться при решении задач это выделение полного квадрата из квадратного трёхчлена.

Квадратным трехчленом называют трёхчлен второй степени. Например, следующие трехчлены являются квадратными:

Идея выделения полного квадрата из таких трехчленов заключается в том, чтобы представить исходный квадратный трехчлен в виде выражения (a + b) 2 + c , где (a + b) 2 полный квадрат, а c — некоторое числовое или буквенное выражение.

Например, выделим полный квадрат из трёхчлена 4x 2 + 16x + 19 .

Для начала нужно построить выражение вида a 2 + 2ab + b 2 . Строить мы его будем из трехчлена 4x 2 + 16x + 19 . Для начала определимся какие члены будут играть роли переменных a и b

Роль переменной a будет играть член 2x , поскольку первый член трехчлена 4x 2 + 16x + 19 , а именно 4x 2 получается если 2x возвести в квадрат:

Итак, переменная a равна 2x

Теперь возвращаемся к исходному трёхчлену и сразу обращаем внимание на выражение 16x . Это выражение является удвоенным произведением первого выражения a (в нашем случае это 2x ) и второго пока неизвестного нам выражения b . Временно поставим на его место вопросительный знак:

Если внимательно посмотреть на выражение 2 × 2x × ? = 16x , то интуитивно станет понятно, что членом b в данной ситуации является число 4, поскольку выражение 2 × 2x равно 4x , и чтобы получить 16x нужно домножить 4x на 4 .

Отсюда делаем вывод, что переменная b равна 4

Значит, нашим полным квадратом будет выражение (2x) 2 + 2 × 2x × 4 + 4 2

Теперь у нас всё готово для выделения полного квадрата из трёхчлена 4x 2 + 16x + 19 .

Итак, возвратимся к исходному трехчлену 4x 2 + 16x + 19 и попробуем аккуратно внедрить в него полученный нами полный квадрат (2x) 2 + 2 × 2x × 4 + 4 2

Вместо 4x 2 записываем (2x) 2

Далее вместо 16x записываем удвоенное произведение, а именно 2 × 2x × 4

Далее прибавляем квадрат второго выражения:

А член 19 пока переписываем как есть:

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 + 19

Теперь обратим внимание на то, что полученный нами многочлен (2x) 2 + 2 × 2x × 4 + 4 2 + 19 не тождественен изначальному трёхчлену 4x 2 + 16x + 19 . Убедиться в этом можно приведя многочлен (2x) 2 + 2 × 2x × 4 + 4 2 + 19 к стандартному виду:

(2x) 2 + 2 × 2x × 4 + 4 2 + 19 = 4x 2 + 16x + 4 2 + 19

Видим, что получается многочлен 4x 2 + 16x + 4 2 + 19 , а должен был получиться 4x 2 + 16x + 19 . Это по причине того, что член 4 2 был искусственно внедрён в изначальный трёхчлен с целью организовать полный квадрата из трёхчлена 4x 2 + 16x + 19 .

Чтобы сохранить значение исходного многочлена, нужно после прибавления члена 4 2 сразу же вычесть его

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19

Теперь выражение (2x) 2 + 2 × 2x × 4 + 4 2 можно свернуть, то есть записать в виде (a + b) 2 . В нашем случае получится выражение (2x + 4) 2

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19

Оставшиеся члены −4 2 и 19 можно сложить. −4 2 это −16 , отсюда −16 + 19 = 3

4x 2 + 16x + 19 = (2x) 2 + 2 × 2x × 4 + 4 2 − 4 2 + 19 = (2x + 4) 2 − 4 2 + 19 = (2x + 4) 2 + 3

Значит, 4x 2 + 16x + 19 = (2x + 4) 2 + 3

Пример 2. Выделить полный квадрат из квадратного трёхчлена x 2 + 2x + 2

Сначала построим выражение вида a 2 + 2 ab + b 2 . Роль переменной a в данном случае играет x, поскольку x 2 = x 2 .

Следующий член исходного трёхчлена 2x перепишем в виде удвоенного произведение первого выражения (это у нас x ) и второго выражения b (это будет 1).

Если b = 1 , то полным квадратом будет выражение x 2 + 2x + 1 2 .

Теперь вернёмся к исходному квадратному трёхчлену и внедрим в него полный квадрата x 2 + 2x + 1 2

x 2 + 2x + 2 = x 2 + 2x + 1 2 − 1 2 + 2 = (x + 1) 2 + 1

Как и в прошлом примере член b (в данном примере это 1) после прибавления сразу был вычтен с целью сохранения значения исходного трёхчлена.

Рассмотрим следующее числовое выражение:

Значение этого выражения равно 17

Попробуем выделить в этом числовом выражении полный квадрат. Для этого сначала построим выражение вида a 2 + 2ab + b 2 . Роль переменной a в данном случае играет число 3 , поскольку первый член выражения 9 + 6 + 2 , а именно 9 можно представить как 3 2 .

Второй член 6 представим в виде удвоенного произведения первого члена 3 и второго 1

То есть переменная b будет равна единице. Тогда полным квадратом будет выражение 3 2 + 2 × 3 × 1 + 1 2 . Внедрим его в исходное выражение:

3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2

Свернем полный квадрат, а члены −1 2 и 2 слóжим:

3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1

Получилось выражение (3 + 1) 2 + 1 , которое по прежнему равно 17

(3 + 1) 2 +1 = 4 2 + 1 = 17

Допустим, у нас имеются квадрат и два прямоугольника. Квадрат со стороной 3 см, прямоугольник со сторонами 2 см и 3 см, а также прямоугольник со сторонами 1 см и 2 см

Вычислим площадь каждой фигуры. Площадь квадрата будет составлять 3 2 = 9 см 2 , площадь розового прямоугольника — 2 × 3 = 6 см 2 , площадь сиреневого — 1 × 2 = 2 см 2

Запишем сумму площадей этих прямоугольников:

Это выражение можно понимать как объединение квадрата и двух прямоугольников в единую фигуру:

Тогда получается фигура, площадь которой 17 см 2 . Действительно, в представленной фигуре содержится 17 квадратов со стороной 1 см.

Попробуем из имеющейся фигуры образовать квадрат. Причем максимально большой квадрат. Для этого будем использовать части от розового и сиреневого прямоугольника.

Чтобы образовать максимально большой квадрат из имеющейся фигуры, можно желтый квадрат оставить без изменений, а половину от розового прямоугольника прикрепить к нижней части желтого квадрата:

Видим, что до образования полного квадрата не хватает еще одного квадратного сантиметра. Его мы можем взять от сиреневого прямоугольника. Итак, возьмем один квадрат от сиреневого прямоугольника и прикрепим его к образуемому большому квадрату:

Теперь внимательно посмотрим к чему мы пришли. А именно на желтую часть фигуры и розовую часть, которая по сути увеличила прежний жёлтый квадрат. Не означает ли это то, что была сторона квадрата равная 3 см, и эта сторона была увеличена на 1 см, что привело в итоге к увеличению площади?

(3 + 1) 2

Выражение (3 + 1) 2 равно 16 , поскольку 3 + 1 = 4 , а 4 2 = 16 . Этот же результат можно получить, если воспользоваться формулой квадрата суммы двух выражений:

(3 + 1) 2 = 3 2 + 6 + 1 = 9 + 6 + 1 = 16

Действительно, в образовавшемся квадрате содержится 16 квадратов.

Оставшийся один квадратик от сиреневого прямоугольника можно прикрепить к образовавшемуся большому квадрату. Ведь речь изначально шла о единой фигуре:

(3 + 1) 2 + 1

Прикрепление маленького квадратика к имеющемуся большому квадрату описывается выражением (3 + 1) 2 + 1 . А это есть выделение полного квадрата из выражения 9 + 6 + 2

9 + 6 + 2 = 3 2 + 6 + 2 = 3 2 + 2 × 3 × 1 + 1 2 − 1 2 + 2 = (3 + 1) 2 + 1

Выражение (3 + 1) 2 + 1 , как и выражение 9 + 6 + 2 равно 17 . Действительно, площадь образовавшейся фигуры равна 17 см 2 .

Пример 4. Выполним выделение полного квадрата из квадратного трёхчлена x 2 + 6x + 8

x 2 + 6x + 8 = x 2 + 2 × x × 3 + 3 2 − 3 2 + 8 = (x + 3) 2 − 1

В некоторых примерах при построении выражения a 2 + 2ab + b 2 не бывает возможным сразу определить значения переменных a и b .

Например, выполним выделение полного квадрата из квадратного трёхчлена x 2 + 3x + 2

Переменной a соответствует x . Второй член 3x нельзя представить в виде удвоенного произведения первого выражения и второго. В этом случае второй член следует умножить на 2, и чтобы значение исходного многочлена не изменилось, сразу же выполнить деление на 2. Выглядеть это будет так:

Получившаяся дробь и содержит значения переменных a и b . Наша задача суметь правильно их распознать. Перепишем эту дробь в виде произведения множителя 2 , дроби и переменной x

Теперь второй член представлен в виде удвоенного произведения первого выражения и второго. Переменная a , как было сказано ранее, равна x . А переменная b равна дроби

Возвращаемся к нашему примеру и прибавляем квадрат второго выражения, и чтобы значение выражения не изменилось, сразу же вычитаем его:

Прибавляем оставшийся член 2

Свернём полный квадрат:

Оставшийся квадрат второго выражения и число 2 можно сложить. В итоге получим:

Пример 6. Выполним выделение полного квадрата из квадратного трёхчлена 9x 2 + 18x + 7

Пример 7. Выполним выделение полного квадрата из квадратного трёхчлена x 2 − 10x + 1

В данном трёхчлене первые два члена связаны знаком «минус». В этом случае как и раньше нужно выделить полный квадрат, но это будет квадрат разности. Проще говоря, нужно построить выражение вида a 2 2ab + b 2 .

Пример 8. Выполним выделение полного квадрата из квадратного трёхчлена 16x 2 + 4x + 1

Пример 9. Разложить многочлен x 2 + 6x + 8 на множители при помощи выделения полного квадрата.

Сначала выделим полный квадрат:

Получившийся многочлена (x + 3) 2 − 1 является разностью квадратов, поскольку единица может быть представлена в виде 1 2 . Воспользуемся формулой разности квадратов и разложим многочлен (x + 3) 2 − 1 на множители:

Преобразование алгебраических выражений с примерами решения и образцами выполнения

Цель алгебраических преобразований:

При решении задач с помощью алгебры обычно приходится производить арифметические действия над алгебраическими выражениями. Причем непосредственно записанный результат получается в виде нового и часто более сложного выражения.

Пусть, например, требуется к сумме двух чисел а и b прибавить их разность. Записывая указанные действия, мы получим результат в таком виде:

Однако это выражение можно упростить, если воспользоваться
свойствами сложения. Именно, в силу сочетательного и переместительного законов сложения, результат преобразуется так:

Выражения (a + b) + (a — b) и 2a равны тождественно, т. е. равенство между ними справедливо при всех значениях букв а и Ь. Переход от одного алгебраического выражения к другому, тождественно равному ему, называется тождественным преобразованием.

Такого рода преобразования, которые большею частью ведут к упрощению записи результата, почти всегда возможны при действиях над алгебраическими выражениями. Настоящая глава содержит описание приемов, применяемых при’ таких преобразованиях. Этому же вопросу посвящены и две следующие главы.

Типы алгебраических выражений

Определение:

Алгебраические выражения, представляющие собой запись арифметических действий (сложения, вычитания, умножения, деления и возведения в степень), производимых над числами и буквами, называются рациональными алгебраическими выражениями.

Рациональное выражение называется целым, если среди указанных в нем действий нет действия деления на выражение, содержащее буквы. Если же такое действие имеется, то выражение называется дробным. Так, выражения

являются целыми. В последнем примере указано действие деления, но выражение 43 — 35, на которое нужно делить, не содержит букв. В то же время выражения :

являются выражениями дробными.

Заметим, что дробное алгебраическое выражение мажет равняться целому. Так, Поэтому рациональные выражения разделяют на целые и дробные в том виде, в котором они заданы непосредственно, до всяких преобразований.

В этой главе мы будем заниматься преобразованием только целых выражений. Среди целых выражений особенно простыми являются так называемые одночлены.

Одночленами называются произведения, составленные из числового множителя (коэффициента) и одной или нескольких букв, каждая из которых взята в некоторой степени.

Числа, выраженные цифрами (т. е. не обозначенные буквами), также причисляются к одночленам. Коэффициенты в одночленах могут быть целыми и дробными, положительными и отрицательными. При записи одночлена принято писать коэффициент впереди множителей, выраженных буквами. Например,

представляют собой одночлены.

Алгебраическая сумма нескольких одночленов называется многочленом. Например,

Одночлены, входящие в многочлен, называются его членами. Говорят, что многочлен составлен из своих членов. Так, многочлен составлен из одночленов 5.

Одночлены целесообразно рассматривать как частный случай многочленов, именно как многочлены, составленные только из одного члена. Многочлены, составленные из двух членов, называются двучленами, из трех членов — трехчленами.

Отметим следующие свойства одночленов и многочленов.

Одночлен не изменяется, если переставить местами множители, из которых он составлен. Например,

Это свойство одночлена непосредственно следует из переместительного закона умножения.

Многочлен не изменяется, если как угодно изменить порядок
его слагаемых
. Например,

Справедливость этого свойства следует из переместительного закона сложения.

§ 3. Приведение подобных членов

Рассмотрим многочлен 5аb — 3аb + 4ab — с. Его можно упростить,
так как члены 5аb, —3ab и 4ab отличаются друг от друга только численными коэффициентами. Такие члены можно соединить в один. Действительно, на основании распределительного закона

Члены многочлена, равные или отличающиеся только коэффициентами, называются подобными. Так, члены 5аb, — 3ab и 4ab подобны.

Если многочлен содержит подобные члены, то его можно упростить по следующему правилу: если многочлен содержит несколько подобных членов, то их можно соединить в один, подобный каждому
из них, приняв за его коэффициент алгебраическую сумму
коэффициентов соединяемых членов
. Упрощение многочленов по этому правилу называется приведением подобных членов.

Пример:

Привести подобные члены в многочлене

Решение:

В этом примере имеются две группы подобных членов: (подчеркнутые один раз) и — 4а, (подчеркнутые дважды). Члены первой группы объединяются в

члены второй группы в (- 4+6)a = 2a. Итак,

Правило приведения подобных членов основывается на следующих соображениях. Прежде всего можно на основании переместительного закона расположить члены многочлена так, чтобы все подобные члены оказались рядом. Затем на основании сочетательного закона можно произвести сложение в каждой группе подобных членов. На основании распределительного закона сложение подобных членов сводится к сложению их коэффициентов.

Если многочлен содержит два одночлена, отличающиеся только знаком, то их можно вычеркнуть. Действительно, такие два члена при сложении взаимно уничтожаются, т. е. дают в сумме нуль. Например,

Сложение и вычитание многочленов

Правило. Для того чтобы сложить два или несколько многочленов, нужно сложить все одночлены, из которых эти многочлены составлены.

Затем для упрощения результата следует привести подобные члены.

Правило сложения многочленов непосредственно следует из сочетательного закона сложения.

Правило. Для того чтобы вычесть многочлен из многочлена, нужно к членам уменьшаемого прибавить члены вычитаемого, взятые с противоположными знаками.

Здесь тоже следует .привести подобные члены для упрощения результата.

Правило вычитания многочленов нуждается в некотором пояснении. Мы знаем, что вычесть какое-нибудь число все равно, что прибавить противоположное. Легко видеть, что если некоторое число выражено в виде многочлена, то противоположное ему число равно многочлену, составленному из тех же членов, но взятых с противоположными знаками. Например,

Действительно, два таких многочлена при сложении дают в сумме нуль, так как их члены взаимно умножаются:

Итак, вычесть какой-нибудь многочлен, действительно, все равно, что прибавить многочлен, составленный из тех же членов, но с противоположными знаками.

После того как правила приведения подобных членов, сложения и вычитания многочленов уже освоены, при сложении и вычитании многочленов нет необходимости выписывать промежуточные результаты. Следует сразу писать ответ, осуществляя раскрытие скобок и приведение подобных членов в уме. Например,

При этом нужно аккуратно учитывать знаки коэффициентов. Коэффициенты одночленов, взятых из скобок^ перед которыми стоит знак , нужно брать без изменения, коэффициенты одночленов, взятых из скобок, перед которыми стоит знак , нужно брать с»
противоположными знаками.

Умножение степеней одной буквы и возведение степени в степень

Пример:

Умножить на

Решение:

есть произведение пяти множителей, каждый из
которых равен а. Далее, есть произведение трех множителей,
равных а. Следовательно, есть произведение восьми
множителей, равных а, т. е.

Также можно рассуждать при любых показателях степени, и мы приходим к следующему правилу.

Правило. Произведение степеней с одинаковыми основаниями
равно степени с тем же основанием и с показателем, равным
сумме показателей
.

Короче: при умножении степеней с одинаковыми основаниями показатели складываются. Это правило записывается в виде следующей формулы:

Правило применимо не только к преобразованию произведения двух множителей, являющихся степенями одной буквы, но и к преобразованию произведения любого числа множителей этого вида. Например,

Обратимся теперь к возведению степени в степень.

Пример:

Возвести в куб.

Решение:

Правило. Результат возведения степени в степень равен степени с тем же основанием и с показателем, равным произведению показателей, участвующих в действии.

Короче: при возведении степени в степень показатели перемножаются. Правило записывается следующей формулой:

Умножение одночленов

Пример:

Перемножить одночлены

Решение:

Мы решили пример следующим образом. Сначала на основании переместительного закона умножения мы изменили порядок множителей так, что коэффициенты оказались рядом и степени одинаковых букв оказались рядом. После этого на основании сочетательного закона умножили коэффициенты и умножили степени с одинаковыми основаниями.

Таким же образом мы можем выполнить умножение любых одночленов.

Правило. Чтобы перемножить два (или больше) одночлена, нужно перемножить их коэффициенты и затем приписать каждую букву, входящую в умножаемые одночлены, с показателем, равным сумме показателей, с которыми эта буква входит в одночлены. Если какая-либо буква входит только в один одночлен, переписать ее с тем же показателем.

Возведение одночлена в степень

Пример:

Решение:

Так же производится возведение в степень с любым показателем произведения, составленного из любого числа множителей.

Именно, степень произведения нескольких чисел равна произведению степеней множителей с тем же показателем.

Это правило легко применяется к возведению в степень любого одночлена.

Пример:

Конечно, при возведении одночлена в степень нет необходимости записывать промежуточный результат. Следует сразу писать ответ.

Пример:

Умножение многочлена на одночлен

Пример:

Решение:

Здесь нужно умножить сумму чисел и на числoСогласно распределительному закону умножения, нужно каждое слагаемое умножить на это число и сложить результаты. Итак,

Точно таким же образом можно поступать всегда при умножении многочлена на одночлен. Мы пришли к следующему правилу.

Для того чтобы умножить многочлен на одночлен, нужно каждый член многочлена умножить на этот одночлен и результаты сложить.

Конечно, после некоторой тренировки нет необходимости записывать промежуточный результат. Следует писать ответ сразу, выполняя умножение одночленов в уме.

Пример:

Замечание:

Если многочлен не содержит подобных членов, то и при умножении его на любой одночлен получится многочлен, не содержащий подобных членов. Таким образом, при умножении многочлена на одночлен приведение подобных членов в результате умножения невозможно, если только его нельзя было сделать еще до умножения.

Умножение многочлена на многочлен

Пример:

Перемножить многочлены а+2b и За— 2b.

Решение:

Всякий многочлен, в частности многочлен За— 2b , выражает запись результата определенных действий над числами и в конце концов обозначает некоторое число. Поэтому при умножении суммы на это число можно пользоваться распределительным законом

Дальнейшие преобразования сводятся к знакомым для нас действиям— умножению многочлена на одночлен и сложению одночленов. Продолжая вычисления, получим

Сделаем еще один пример, на этот раз не прерывая выкладки рассуждениями.

Пример:

Мы приходим к следующему правилу:

Правило 1. Для того чтобы умножить многочлен на многочлен, нужно каждый член первого множителя умножить на второй множитель, и сложить получившиеся результаты.

Умножение членов первого многочлена на второй можно произведи сразу, и это действие сводится к умножению членов первого многочлена на все члены второго. Таким образом, мы приходим к следующему правилу.

Правило 2. Для того чтобы перемножить два многочлена, нужно каждый член первого многочлена умножить на каждый член второго многочлена и результаты сложить.

Второе правило умножения многочленов сокращает запись по сравнению с первым. Рекомендуется, однако, сначала пользоваться первым правилом и переходить ко второму, когда первое правило уже освоено.

Правила умножения многочленов можно применять и к умножению равных многочленов, т. е. к возведению многочлена в квадрат.
Например,

Умножение нескольких многочленов

Умножение нескольких многочленов следует производить постепенно, объединяя множители каким-либо способом по два. Пример:

Расстановку квадратных скобок можно было, конечно, не делать, а сразу приступить к умножению первых двух множителей.

Пример:

Выполним умножение, объединив первый множитель со вторым, третий с четвертым:

Можно сразу производить умножение нескольких многочленов, руководствуясь следующим правилом:

Чтобы умножить несколько многочленов, нужно составить всеми возможными способами произведения членов, взятых по одному из всех перемножаемых многочленов, и сложить полученные результаты.

Приведем один пример на это правило с подробной записью:

Однако при пользовании этим правилом легко ошибиться, пропустив какую-нибудь комбинацию членов перемножаемых многочленов. Поэтому этим правилом следует пользоваться только в самых простых случаях, например при перемножении двучленов.

Умножение многочленов, содержащих одну букву

Члены многочлена, содержащего одну букву, целесообразно располагать в порядке убывания показателей степеней, с которыми эта буква в него входит. При этом если многочлен содержит так называемый свободный член, т. е. слагаемое, не содержащее букв, то его следует поставить на последнем месте. Например, многочлен после расположения его членов по
убывающим степеням принимает вид

Член многочлена, содержащий наибольшую степень буквы, называется старшим членом многочлена. Показатель степени в старшем члене называется степенью многочлена. Так, старший член многочлена и этот многочлен есть многочлен четвертой степени. Считается условно, что «многочлены»,
состоящие только из свободного члена, т. е. числа, выраженные цифрами, являются многочленами нулевой степени.

Очевидно, что при умножении многочлена, расположенного по
убывающим степеням, на какой-либо одночлен, зависящий от
той же буквы, получается в результате многочлен, также расположенный по убывающим степеням.

При умножении двух расположенных многочленов целесообразно подписывать результаты умножения отдельных членов одного
многочлена на другой друг под другом, сдвигая начало записи так, чтобы подобные члены оказывались в одном столбце. В случае, если степени идут не подряд, следует оставлять между соответствующими одночленами пустые места, так как может оказаться, что, хотя в первой строке одночлен, содержащий некоторую степень буквы, отсутствует, в других строках появятся одночлены этой степени. Пример:

При такой записи умножение многочленов становится похожим на умножение многозначных чисел.

Заметим, что из правила умножения многочленов следует, что старший член произведения двух многочленов равен произведению старших членов множителей. Следовательно, степень произведения двух многочленов равна сумме степеней множителей. Так, при умножении многочлена пятой степени на многочлен третьей степени мы получим многочлен восьмой степени.

При умножении многочленов не очень высокой степени рекомендуется еще один способ, при котором, результат можно писать сразу, без записи промежуточных результатов. При пользовании этим способом некоторые несложные вычисления приходится производить в уме.

Рассмотрим один пример с подробным объяснением порядка действий.

Пример:

Решение:

Старший член произведения данных многочленов равен произведению их старших членов

Далее, в произведение могут входить члены, содержащие и свободный член.

Члены, содержащие получаются по следующей схеме:

Здесь соединены скобками все те слагаемые данных многочленов, при умножении которых получаются члены, содержащие Следовательно, коэффициент в произведении равен 1 • 5 + 3 • 1 =8.

Члены, содержащие получаются так:

Следовательно, коэффициент при равен равен

Коэффициент при в произведении

равен . Наконец, свободный член равен Наконец, свободный член равен

Итак, произведение равно

Ответ.

Конечно, при пользовании этим приемом не нужно переписывать произведение несколько раз, как мы это сделали при объяснении. Нужно прямо выписывать члены результата умножения один за другим, каждый раз сосредоточивая внимание на том, какие члены нужна перемножить, для того чтобы получить х в данной степени, и выполняя все необходимые вычисления в уме.

В особенно простых случаях описанный прием можно применять и при умножении нескольких многочленов.

Пример:

В последнем примере мы сразу записали результат умножения, воспользовавшись общим правилом умножения многочленов (§ 10): чтобы умножить многочлены, нужно составить всеми возможными способами произведения их членов, взятых по одному из каждого множителя, и сложить полученные результаты. Старший член произведения равен произведению старших членов множителей и, следовательно, равен . Далее смотрим, какие члены нужно умножить, чтобы получить одночлены, содержащие . Очевидно, что для этого- нужно из двух скобок взять первое слагаемое, а из третьей — второе и сделать этот выбор всеми возможными способами. Следовательно, коэффициент при равен 2 + 3 + 5 = 10.

Далее, х в первой степени получается при умножении первого слагаемого из одной скобки на вторые слагаемые из остальных двух. Поэтому коэффициент при x равен Наконец свободный член равен просто произведению свободных членов

Сокращенное умножение по формулам

При умножении многочленов часто повторяются некоторые типичные случаи, которые следует запомнить.

Формула 1.т. е. квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Доказательство:

Формула 2. т. е. квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Доказательство:

Формула 3. т. е. произведение
суммы двух чисел на их разность равно разности квадратов этих чисел.

Доказательство:

Рассмотрим несколько примеров на применение этих формул к умножению многочленов. При пользовании формулами следует помнить, что А и В в формулах обозначают любые числа, и в частности, эти числа могут быть выражены в виде одночленов или многочленов.

Пример:

Здесь можно применить формулу 2, принимая Применяя эту формулу, получим

Выписывать промежуточный результат с такой подробностью нет необходимости. По мере развития навыков в пользовании формулами нужно привыкать к возможно более краткой записи.

Пример:

Применяя формулу 1, положивполучим

Пример:

Здесь применена формула 3 при А = 5х, В = 4у.

Рассмотрим теперь более сложный пример.

Пример:

(За + 2b + 4c — d) (За+ 2b — 4с +d). Здесь прежде всего можно применить формулу 3, полагая А = 3а+2b;В = 4с — d. Сделав это, получим

А теперь можно применить формулы 1 и 2 для дальнейших преобразований. Получим

Несколько реже, но все же достаточно часто приходится пользоваться еще следующими формулами.

Формула4. т.е. куб суммы двух чисел равен кубу первого числа, плюс утроенное произведение квадрата первого числа на второе, плюс утроенное произведение первого числа на квадрат второго, плюс куб второго числа.

Формула 5. т. е. куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе, плюс утроенное произведение первого числа на квадрат второго, минус куб второго числа.

Доказательства этих формул необходимо произвести самим учащимся.

Формула 6 читается так: произведение суммы двух чисел на неполный квадрат их разности равно сумме кубов этих чисел. Здесь «неполным квадратом разности» чисел А и В названо выражение Название это не точное, но образное и связано с внешним сходством выражения с выражением являющимся квадратом разности чисел A и В.

Таким же образом выражение участвующее в формуле 7, называется неполным квадратом суммы чисел A и В на основании внешнего сходства с выражением

Так что формула 7 читается так: произведение разности двух чисел на неполный квадрат их суммы равно разности кубов этих чисел.

Наконец формула 8 читается так: квадрат суммы нескольких чисел равен сумме их квадратов плюс всевозможные удвоенные произведения этих чисел, взятых по два.

Рассмотрим несколько примеров на. применение формул 4—8.

Пример:

Пример:

Пример:

Здесь результат пишется сразу, как только обнаружено, что второй множитель есть «неполный квадрат разности» чисел 5x и .

Пример:

Здесь применена формула 8.

Пример:

Решение:

Решим этот пример тремя способами:

Здесь мы сначала преобразовали как квадрат суммы, а затем умножили многочлены по общему правилу умножения многочлена на многочлен.

Здесь мы разбили квадрат суммы на «неполный квадрат суммы» и одночлен 2ab, а затем воспользовались распределительным законом и формулой 7.

Способ 3.

В заключение обзора формул сделаем следующее, общее замечание. Всякое преобразование произведения многочленов, которое совершается при помощи формул 1—8, может быть проведено и без применения формул, посредством общих правил умножения многочлена на многочлен. Формулы 1—8 позволяют только в некоторых случаях упростить и сократить вычисления. Поэтому, формулы 1—8 называют формулами сокращенного умножения.

Применение формул сокращенного умножения к устным вычислениям

Формулы сокращенного умножения применяются не только к умножению многочлена на многочлен. Они с успехом могут быть применены к многим вычислениям над числами. Рассмотрим несколько таких примеров.

Пример:

Вычислить 19 • 21

Решение:

Достаточно заметить, что 19 = 20 — 1 и 21 = 20+1, чтобы, воспользовавшись формулой 3, сразу сказать результат. Именно,

Пример:

Как получен этот результат?

Решение:

При помощи формулы 1

Пример:

Пример:

Таким образом, формулы сокращенного умножения удобно применять:

  1. При умножении чисел, представляющих собой сумму и разность двух чисел, каждое из которых легко возвести в квадрат.
  2. При возведении в квадрат двузначных чисел, близких к «круглым» числам.

Покажем некоторые другие применения. Часто приходится возводить в квадрат числа, очень близкие к единице, причем результат нужно знать приближенно с тем же числом знаков после запятой, с которым дано число, возводимое в квадрат. Например,

Обобщая эти два примера, приходим к следующему выводу. Если а есть очень маленькое по абсолютной величине число, положительное или отрицательное, то

Точное равенство имеет вид Но число

меньше абсолютной величины а во столько же раз, во сколько абсолютная величина а меньше 1. Поэтому, если а очень мало по абсолютной величине, то будет исчезающе малым по сравнению с остальными слагаемыми.

Таким же образом из формулы для куба суммы мы получим приближенную формулу для куба числа, близкого к единице. Именно,

Посмотрим на примере, насколько эта формула точна.

Пример:

Последние два слагаемых исчезающе малы по сравнению с первыми, так что действительно что соответствует указанной приближенной формуле.

Наконец,, формула 3 дает при малых а следующий результат:

Например,

Некоторые выводы

Мы условились рассматривать одночлены как частный случай многочленов, именно как многочлены, составленные из одного члена. Воспользуемся этим соглашением и сделаем следующие выводы:

  1. Сумма и разность двух многочленов есть многочлен.
  2. Произведение двух многочленов есть многочлен.

А из этих выводов непосредственно следует такая общая теорема:

Всякое целое алгебраическое выражение равно некоторому многочлену.

Или, что то же самое:

Всякое целое алгебраическое выражение может быть преобразовано к виду многочлена.

Действительно, целое алгебраическое выражение есть запись действий сложения, вычитания и умножения (в том числе и умножения равных множителей, т. е. возведения в степень) над числами, часть которых обозначена буквами. Как заданные числа, так и отдельные буквы представляют собой одночлены.

Произведя над ними одно за другим указанные действия, мы будем получать результаты в виде многочленов в силу сформулированных выше выводов. И, наконец, окончательный результат тоже будет иметь вид многочлена, что и требовалось доказать. Например,

Заметим еще, что всякий многочлен равен некоторому
приведенному многочлену, т. е. многочлену, не содержащему подобных членов. Действительно, если многочлен содержит подобные члены, то их можно привести. В силу этого всякое целое алгебраическое выражение можно преобразовать к виду приведенного многочлена.

Цепочка тождественных преобразований называется алгебраической выкладкой. Таким образом, в настоящей главе даны правила проведения выкладки, посредством которой всякое целое алгебраическое выражение может быть преобразовано к виду приведенного многочлена.

Очевидно, что если два приведенных многочлена составлены из одинаковых одночленов, то они равны тождественно, т. е. их значения равны при всех численных значениях входящих в них букв. Верна также и обратная теорема:

Теорема о тождестве. Если два приведенных
многочлена равны тождественно, та они составлены из oдинаковых одночленов.

Доказательство теоремы о тождестве довольно сложно и выходит за рамки курса элементарной алгебры.

Эти две теоремы дают возможность ответить на такой вопрос. Пусть даны два целых алгебраических выражения. Равны они тождественно или нет? Для решения этого вопроса достаточно привести каждое из выражений к виду приведенного многочлена. Если при этом окажется, что полученные многочлены составлены из одинаковых одночленов, то данные выражения тождественно равны. Если же полученные многочлены окажутся различными, т. е. составленными из неодинаковых одночленов, то данные выражения не равны тождественно.

Пример:

Решение:

После преобразований выражение, находящееся в левой части равенства, оказалось равным и выражение, находящееся в правой части равенства, тоже равно . Тождество доказано.

Пример:

Рассмотрим два выражения

Они имеют ряд одинаковых значений. Действительно, при х = 0 они оба равны нулю; при х = 1 каждое из них равно 4 • 2 = 8; при х = 2 первое равно 10 • 8 = 80, второе равно 16 • 5 = 80; при х = 3 первое равно 18 • 20 = 360,
второе 36 • 10 = 360. Может быть они равны тождественно? Для выяснения этого вопроса раскроем скобки:

Таким образом, данные выражения преобразуются в различные приведенные многочлены, и следовательно, они не могут равняться тождественно. И действительно, они принимают различные значения, например при первое выражение равно второе — равно

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://spacemath.xyz/tozhdestvennye-preobrazovaniya-mnogochlenov/

http://lfirmal.com/preobrazovanie-algebraicheskih-vyrazheniy/