Как применить интегральное преобразование к уравнению

Преобразование Лапласа

По этой ссылке вы найдёте полный курс лекций по математике:

рассмотрели интегральное преобразование Фурье с ядром K(t, О = е Преобразование Фурье неудобно тем, что должно быть выполнено условие абсолютной интегрируемости функции f(t) на всей оси t, Преобразование Лапласа позволяет освободиться от этого ограничения. Определение 1. Функцией-оригиналом будем называтьвсякую комплекснозначную функцию f(t) действитсл ьного аргумента t, удовлетворя юшую следующим условиям:

1. f(t) непрерывна на всей оси t, кроме отдельных точек, в которых f(t) имеет разрыв 1-го рода, причем накаждом конечном интервалеоси *такихточек можетбыть лишь конечное число; 2. функция f(t) равна нулю при отрицательных значениях t, f(t) = 0 при 3. при возрастании t модуль f(t) возрастает не быстрее показательной функции, т. е. существуют числа М > 0 и s такие, что для всех t Ясно, что если неравенство (1) выполняется при некотором s = aj, то оно будет ВЫПОЛНЯТЬСЯ и при ВСЯКОМ 82 > 8].

Точная нижняя грань s0 всех чисел з, «о = infs, для которых выполняется неравенство (1), называется показателем роста функции f(t). Замечание. В общем случае неравенство не имеет места, но справедлива оценка где е > 0 — любое. Так, функция имеет показатель роста в0 = Для нее неравенство \t\ ^ М V* ^ 0 не выполняется, но верно неравенство |f| ^ Меи. Условие (1) гораздо менее ограничительное, чем условие (*). Пример 1. функция не удовлетворяет условию (»), но условие (1) выполнено при любом s ^ I и А/ ^ I; показатель роста 5о = • •

Так что является функцией-оригиналом. С другой стороны, функция не является функцией-оригиналом: она имеет бесконечный порядок роста, «о = +оо. Простейшей функцией-оригиналом является так называемая единичная функция Если некоторая функция удовлетворяет условиям 1 и 3 определения 1, но не удовлетворяет условию 2, то произведение уже является функцией-оригиналом.

Для простоты записи мы будем, как правило, множитель rj(t) опускать, условившись, что все функции, которые мы будем рассматривать, равны нулю для отрицательных t, так что если речь идет о какой-то функции f(t), например, о sin ty cos t, el и т. д., то всегда подразумеваются следующие функции (рис. 2): п=п(0 Рис. 1 Определение 2. Пусть f

Свойства Свертка функций Теорема умножения Отыскание оригинала по изображению Использование теоремы обращения операционного исчисления Формула Дюамеля Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами Решение интегральных уравнений где интеграл берется по положительной полуоси t. Функцию F(p) называют также преобразованием Лапласа функции /(/); ядро преобразования K(t> р) = e

pt. Тот факт, что функция имеет своим изображением F(p), будем записывать Пример 2. Найти изображение единичной функции r)(t).

Возможно вам будут полезны данные страницы:

Функция является функцией-оригиналом с показателем роста в0 — 0. В силу формулы (2) изображением функции rj(t) будет функция Если то при интеграл в правой части последнего равенства будет сходящимся, и мы получим так что изображением функции rj(t) будет функция £. Как мы условились, будем писать, что rj(t) = 1, и тогда полученный результат запишется так: Теорема 1. Лгя всякой функции-оригинала f(t) с показателем роста з0 изображение F(p) определено в полуплоскости R ер = s > s0 и является в этой полуплоскости аналитической функцией (рис. 3).

Пусть Для доказательства существования изображения F(p) в указанной полуплоскости достаточно установить, что несобственный интеграл (2) абсолютно сходится при a > Используя (3), получаем что и доказывает абсолютную сходимость интеграла (2). Одновременно мы получили оценку преобразования Лапласа F(p) в полуплоскости сходимости Дифференцируя выражение (2) формально под знаком интеграла по р, находим Существование интеграла (5) устанавливается так же, как было установлено существование интеграла (2).

Применяя для F'(p) интегрирование по частям, получаем оценку откуда следует абсолютная сходимость интеграла (5). (Внеинтегральное слагаемое ,0.,— при t +оо имеет предел, равный нулю). В любой полуплоскости Rep ^ sj > «о интеграл (5) сходится равномерно относительно р, поскольку он мажорируется сходящимся интегралом не зависящим от р. Следовательно, дифференцированиепо р законно и равенство (5) справедливо. Поскольку производная F'(p) существует, преобразование Лапласа F(p) всюду в полуплоскости Rep = 5 > 5о является аналитической функцией. Из неравенства (4) вытекает Следствие.

Если тонка р стремится к бесконечности так, что Re р = s неограниченно возрастает, то Пример 3. Найдем еще изображение функции любое комплексное число. Показатель росга «о функции /(() равен а. 4 Считая Rep = я > а, получим Таким образом, При а = 0 вновь получаем формулу Обратим внимание на то, что изображение функции eat является аналитической функцией ар1умента р не только в полуплоскости Rep > а, но и во всех точках р, кроме точки р = а, где это изображение имеет простой полюс.

В дальнейшем мы не раз встретимся с подобной ситуацией, когда изображение F(p) будет аналитической функцией во всей плоскости комплексного переменного р, за исключением изолированных особых точек. Противоречия с теоремой 1 нет. Последняя утверждает лишь, что в полуплоскости Rep > «о функция F(p) не имеет особых точек: все они оказываются лежащими или левее прямой Rep = so, или на самой этой прямой. Замечай не. В операционном исчислении иногда пользуются изображением функции /(f) по Хевисайду, определяемым равенством и отличающимся от мображения по Лапласу множителем р. §2.

Свойства преобразования Лапласа В дальнейшем через будем обозначать функции-оригиналы, а через — их изображения по Лапласу, Из определения изображения следует, что если Теорема 2 (единстве* мости ). £biw dee непрерывные функции ) имеют одно и тоже изображение , то они тождественно равны. Teopewa 3 (п«иейиост* преобраэдоияя Лапласа). Если функции-оригиналы, то для любых комплексных постоянных аир Справедливость утверждения вытекает из свойства линейности интеграла, определяющего изображение: , — показатели роста функций соответственно).

На основании этогосвойства получаем Аналогично находим, что и, далее, Теорема 4 (подобия). Если f(t) — функция-оригинал и F(p) — ее изображение по Лапласу, то для любого постоянного а > О Полагая at = т, имеем Пользуясь этой теоремой, из формул (5) и (6) получаем Теорема 5 (о дифференцировании оригинала). Пусть является функцией-оригиналом с изображением F(p) и пусть — также функции-оригиналы, а где — показатель роста функции Тогда и вообще Здесь под понимается правое предельное значение Пусть .

Пусть Следовательно, Теорема 5 устанавливает замечательное свойство интегрального преобразования Лапласа: оно (как и преобразование Фурье) переводит операцию дифференцирования в алгебраическую операцию умножения на р. Формула включения. Если являются функциями-оригиналами, то В самом деле, В силу следствия из теоремы 1, всякое изображение стремится к нулю при . Значит, , откуда вытекает формула включения ( Теорема 6 (о дифференцировании изображения).

Дифференцирование изображения сводится к умножению на оригинала, Так как функция F(p) в полуплоскости so является аналитической, то ее можно дифференцировать по р. Имеем Последнее как раз и означает, что Пример 5. Пользуясь теоремой 6, найти изображение функции 4 Как известно, Отсюда ( Вновь применяя теорему 6, найдем , вообще Теорема 7 (интегрирование оригинала). Интегрирование оригинала сводится к делению изображения на Положим Нетрудно проверить, что если есть функция-оригинал, то и будет функцией-оригиналом, причем .

Пусть . В силу так что С другой стороны, , откуда F= Последнее равносильно доказываемому соотношению (13). Пример 6. Найти изображение функции M В данном случае , так что . Поэтому Теорема 8 (интегрирование изображения). Если и интеграл сходится, то он служит изображением функции ^:

ПРЕОБРАЗОВАНИЕ ЛАПЛАСА Основные определения Свойства Свертка функций Теорема умножения Отыскание оригинала по изображению Использование теоремы обращения операционного исчисления Формула Дюамеля Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами Решение интегральных уравнений Действительно, Предполагая, что путь интегрирования лежите полуплоскости so, мы можем изменить порядок интегрирования Последнее равенство означает, что является изображением функции Пример 7. Найти изображение функции М Как известно, .

Поэтому Так как Положим получаем £ = 0, при. Поэтому соотношение (16) принимает вид Примере. Найти изображение функции f(t), заданной графически (рис.5). Запишем выражение для функции f(t) в следующем виде: Это выражение можно получить так. Рассмотрим функцию и вычтем из нее функцию Разность будет равна единице для . К полученной разности прибавим функцию В результате получим функцию f(t) (рис. 6 в), так что Отсюда, пользуясь теоремой запаздывания, найдем Теорема 10 (смещения). то для любого комплексного числа ро.

В самом деле, Теорема позволяет по известным изображениям функций находить изображения тех же функций, умноженных на показательную функцию , например, 2.1.

Свертка функций. Теорема умножения Пусть функции /(£) и определены и непрерывны для всех t. Сверткой этих функций называется новая функция от t, определяемая равенством (если этот интеграл существует). Для функций-оригиналов операция свертим всегда выполнима, причем (17) 4 В самом деле, произведение функций-оригиналов как функция от т, является финитной функцией, т.е. обращается в нуль вне некоторого конечного промежутка (в данном случае вне отрезка .

Для финитных непрерывных функций операция свертки выполнима, и мы получаем формулу Нетрудно проверить, что операциясвертки коммутативна, Теорема 11 (умножения). Если , то свертка t) имеет изображение Нетрудно проверить, что свертка ( функций-оригиналов есть функция-оригинал с показателем роста » где , — показатели роста функций соответственно. Найдем изображение свертки, Воспользовавшись тем, что будем иметь Меняя порядок интегрирования в интеграле справа ( такая операция законна) и применяя теорему запаздывания, получим.

Таким образом, из (18) и (19) находим — умножению изображений отвечает свертывание оригиналов, Пртер 9. Найти изображение функции А функция V(0 ость свортка функций . В силу теоремы умножения Задача. Пусть функция /(£), пориодическая с периодом Т, есгъ функция-оригинал. Показать, что ее изображение по Лапласу F(p) дается формулой 3. Отыскание оригинала по изображению Задача ставится так: дана функция F(p), надо найти функцию /( изображением которой является F(p). Сформулируем условия, достаточные для того, чтобы функция F(p) комплексного переменного р служила изображением.

Теорема 12. Если аналитическая в полуплоскости so функция F(p) 1) стремится к нулю при в любой полуплоскости R s0 равномерно относительно arg р; 2) интеграл сходится абсолютно, то F(p) является изображением некоторой функции-оригинала Задача. Может ли функция F(p) = служить изображением некоторой функции-оригинала? Укажем некоторые способы отыскания оригинала по изображению. 3.1. Отыскание оригинала с помощью таблиц изображений Прежде всего стоит привести функцию F(p) к более простому, «табличному» виду.

Например, в случае, когда F(p) — дробно-рациональная функция аргумента р,ее разлагают на элементарные дроби и пользуются подходящими свойствами преобразования Лапласа. Пример 1. Найти оригинал для Запишем функцию F

Использование теоремы обращения и следствий из нее Теорема 13 (обращения). Если функция fit) есть функция-оригинал с показателем роста s0 и F(p) — ее изображение, то в любой точке непрерывности функции f(t) выполняется соотношение где интеграл берется вдоль любой прямой и понимается в смысле главного значения, т. е. как Формула (1) называется формулой обращения преобразования Лапласа, или формулой Меллина.

В самом деле, пусть, например, f(t) — кусочно-гладкая на каждом конечном отрезке [0, а) функция-оригинал-с показателем роста s0. Рассмотрим функцию любое. Функция удовлетворяет условиям применимости интегральной формулы Фурье, и, следовательно, справедлива формула обращения преобразования Фурье, Подставляя в (3) выражение найдем где F(p) — преобразование Лапласа функции f(t) при р = 8 + Формулу (2) можно переписать в виде откуда получаем формулу обращения преобразования Лапласа Как следствие из теоремы обращения получаем теорему единственности.

Теорема 14. Две непрерывные функции , имеющие одно и то же изображение F(p), тождественны. Непосредственное вычисление интеграла обращения (1) обычно затруднительно. Отыскание оригинала по изображению упрощается при некоторых дополнительных ограничениях на F(p). Теорема 15. Пусть изображение F(p) — дробно-рациональная функция с пмюсами Рп-

Тогда оригиналом для F(p) будет функция , где Пусть изображение F(p) — дробно-рациональная функция, многочлены относительно р (взаимно простые), причем степень числителя А(р) меньше степени знаменателя В(р), т.к. для всякого изображения должно выполняться предельное соотношение Пусть корни знаменателя В(р), являющиеся полюсами изображения а их кратности равны тп соответственно.

Если число 5, фигурирующее в формуле (1), взять большим всех то по формуле обращения, которая в этих условиях применима, получим Рассмотрим замкнутый контур Гд (рис.7), состоящий из дуги CR окружности радиуса R с центром в начале координат и стягивающей ее хорды АВ (отрезка прямой Re р = з), и проходимый в положительном направлении, причем радиус R настолько велик, что все полюсы F(p) лежат внутри Гл. По теореме Коши о вычетах при любом R, удовлетворяющем указанному условию, будем иметь Второе слагаемое слева в равенстве (5) стремится к нулю при R оо.

Это следует из леммы Жордана

если в ней заменить р на iz и учесть, что F(p) 0 при Rep +оо. Переходя в равенстве (5) к пределу при R-* оо, мы получим слева а справа,— сумму вычетов по всем полюсам функции F(p) ПРЕОБРАЗОВАНИЕ ЛАПЛАСА Основные определения Свойства Свертка функций Теорема умножения Отыскание оригинала по изображению Использование теоремы обращения операционного исчисления Формула Дюамеля Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами Решение интегральных уравнений Замечание.

Воспользовавшись формулой для вычисления вычетов, найдем, что Если все полюсы р\, рз. рп — просгые, то и формула (6) принимает вид Пример 3. Найти оригинал для функции Теорема 16. Пусть изображение F(p) является аналитической функцией в бесконечно удаленной точке р = оо, причем ее раз,южение в окрестности > R бесконечно удаленной точки имеет вид Тогда оригиначом для F

Решение линейных дифференциальных уравнений с постоянными коэффициентами Дано линейное дифференциальное уравнение второго порядка с постоянными коэффициентами действительные числа) и требуется найти решение x(t) уравнения (1) для t > 0, удовлетворяющее начальным условиям Будем считать, что f(t) есть функция-оригинал. Тогда x(t) — также функция-оригинал. Пусть По теореме о дифференцировании оригинала имеем ,.

Перейдем в уравнении (1) от оригиналов к изображениям. Имеем Это уже не дифференциальное, а алгебраическое уравнение относительно изображения Х(р) искомой функции. Его называют операторным уравнением. Решая его, найдем операторное решение задачи (1)-(2) — Оригинал для Х(р) будет искомым решением x(t) задачи (1)-(2). Обший случай линейного дифференциального уравнения n-го порядка (n ^ 1) с постоянными коэффициентами от случая п = 2 принципиально ничем не отличается.

Приведем общую схему решения задачи Коши Х(р) = Задача Коши в пространстве оригиналов IV I Решение задачи Коши Т-Г’ Операторное уравнение в пространстве изображений Решение операторного уравнения III II Здесь Л означает применение к 1 преобразование Лапласа, JT1 — применение к III обратного преобразования Лапласа. Пример 1. Решить задачу Коши I. Операторное уравнение откуда По теореме о дифференцировании изображения Поэтому Формула Дюамеля В приложениях операционного исчисления к решению дифференциальных уравнений часто пользуются следствием из теоремы умножения, известным под названием формулы Дюамеля.

Пусть — функции-оригиналы, причем функция f(t) непрерывна на непрерывно дифференцируема на Тогда если ,то потеоремеумножения получаем, что Нетрудно проверить, что функция ip(t) непрерывно дифференцируема на причем Отсюда, в силу правила дифференцирования оригиналов, учитывая, что , получаем формулу Дюамеля (4) Покажем применение этой формулы. Пусть требуется решить линейное дифференциальное уравнение n-го порядка (n ^ 1) с постоянными коэффициентами при нулевых начальных условиях (последнее ограничение несущественно: задачу с ненулевыми начальными условиями можно свести к задаче с нулевыми условиями заменой искомой функции).

Если известно решение Х\ (t) дифференциального уравнения с той же левой частью и правой частью, равной единице, при нулевых начальных условиях то формула Дюамеля (4) позволяет сразу получить решение исходной задачи В самом деле, операторные уравнения, отвечающие задачам ), имеют соответственно вид и где F(p) — изображение функции ) легко находим Отсюда по формуле Дюамеля t или, поскольку Пример 2.

Решить задачу Коши Рассмотрим вспомогательную задачу Применяя операционный метод, находим По формуле (П) получаем решение x(t) исходной задачи: ПРЕОБРАЗОВАНИЕ ЛАПЛАСА Основные определения Свойства Свертка функций Теорема умножения Отыскание оригинала по изображению Использование теоремы обращения операционного исчисления Формула Дюамеля Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами Решение интегральных уравнений 4.2.

Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами Интегрирование систем осуществляется так же, как и решение одного линейного дифференциального уравнения — путем перехода от системы дифференциальных уравнений к системе операторных уравнений. Решая последнюю как систему линейных алгебраических уравнений относительно изображений искомых функций, получаем операторное решение системы.

Оригинал для него будет решением исходной системы дифференциальных уравнений. Пример 3. Найти решение линейной системы удовлетворяющее начальным условиям 4 Пусть Пользуясь свойством линейности преобразования Лапласа и теоремой о дифференцировании оригиналов, сводим исходную задачу Коши к операторной системе Решение исходной задачи Коши 4.3. Решение интегральных уравнений Напомним, что интегральным уравнением называют уравнение, в котором неизвестная функция входит под знак интеграла.

Мы рассмотрим лишь уравнение вида (12) называемое линейным интегральным уравнением Вольтерра второго рода с ядром зависящим от разности аргументов (уравнение типа свертки). Здесь — искомая фуннция, — заданные функции. Пусть f(t) и K(t) есть функции-оригиналы, . Применяя к обеим частям (12) преобразование Лапласа и, пользуясь теоремой умножения, получим Решая последнюю относительно, получаем Оригинал для Ф(р) будет решением интегрального уравнения (12).

Пример 4. Решить интегральное уравнение 4 Применяя преобразование Лапласа к обеим частям (14), получим Функция является решением уравнения (14) (подстановка уравнение (14) обращает поело дне© в тождество Замечание. Преобразование Лапласа может быть использовано также при решении некоторьж задач для уравнений математической физики. Функция-оригинал Преобразование Лапласа Упражнения Установите, каше из указанных функций являются функциями-оригиналами:

Пользуясь свойствами преобразования Лапласа, найдите изображения следующих функций: Найдите изображение следующих функций, заданных графически: Найдите оригиналы по заданному изображению: Решите задачу Коши для следующих дифференциальных уравнений: Решите задачу Коши доя следующих систем дифференциальных уравнений: Решите интегральные уравнения:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Примеры решений задач по операционному исчислению (преобразованию Лапласа)

Операционное (символическое) исчисление – это один из методов математического анализа, позволяющий в некоторых случаях свести исследование и решение дифференциальных, псевдодифференциальных, интегральных уравнений, к более простым алгебраическим задачам.

Изучая преобразование Лапласа, мы вводим оригинал функции $f(t)$ и ее изображение $F(p)$, находимое по формуле:

$$F(p) = \int_0^\infty f(t) e^<-pt>dt$$

Для быстроты и удобства решения задач составлена таблица изображений и оригиналов, которая, наряду с теоремами (линейности, подобия, смещения, запаздывания), свойствами и правилами дифференцирования и интегрирования изображения/оригинала, постоянно используется в решении примеров.

В этом разделе вы найдете готовые задания разного типа: восстановление оригинала или изображения функции, нахождение свертки функций, решение ДУ, систем ДУ или интегральных уравнений с помощью преобразования Лапласа и т.д.

Как найти изображение функции

Задача 1. Найти изображение данного оригинала, или оригинала, удовлетворяющего данному уравнению

Задача 2. Пользуясь определением, найти изображение функции $f(t)=3^t$.

Задача 3. Найти изображение функции: $\int_0^t \cos \tau \cdot e^<-3\tau>d\tau. $

Задача 4. Найти изображение оригинала $f(x)$ двумя способами:
1) Вычислив интеграл $F(p) = \int_0^\infty f(x) e^<-px>dx$;
2) Воспользовавшись таблице изображений и свойствами преобразования Лапласа.
Оригинал задается формулой (курсочно-линейная функция, см. файл).

Как найти оригинал функции

Задача 5. Найти оригинал изображения $F(p)$, где

Задача 6. Найти оригинал изображения

Задача 7. Найти оригинал для функции с помощью вычетов

Как решить ДУ (систему ДУ) операционным методом

Задача 8. Найти частное решение дифференциального уравнения с заданными начальными условиями операторным методом

Задача 9. Найти решение задачи Коши методами операционного исчисления

Задача 10. Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

Задача 11. Методом операционного исчисления найти решение задачи Коши для ДУ 3-го порядка

Задача 12. Решите задачу Коши для системы дифференциальных уравнений с помощью преобразования Лапласа.

Задача 13. C помощью формулы Дюамеля найти решение уравнения

Задача 14. Решить систему ДУ с помощью преобразования Лапласа

Как решить интегральное уравнение

Задача 15. Методом операционного исчисления найти решение интегрального уравнения

$$ y(t)=\cos t +\int_0^t (t-\tau)^2 y(\tau)d \tau. $$

Задача 16. Решить интегральное уравнение

$$ \int_0^t ch (\tau) x(t-\tau)d \tau = t. $$

Как найти свертку функций

Задача 17. Найти свертку функций $f(t)=1$ и $\phi(t)=\sin 5t$.

Помощь с решением заданий

Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Применение преобразования Лапласа к решению
линейных дифференциальных уравнений и систем

1°. Общие сведения о преобразовании Лапласа: оригинал и изображение

Функцией-оригиналом называется комплекснозначная функция действительного переменного , удовлетворяющая следующим условиям:

2) функция интегрируема на любом конечном интервале оси ;

3) с возрастанием модуль функции растет не быстрее некоторой показательной функции, т. е. существуют числа 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAQBAMAAAC1onFLAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAgUHAYqEh5RGR0VIxELEI83NdAAABBklEQVQY02NgIAAcBRWA5EVBMVRhDjUwdfq/AZCc/kUBVXa6sC2IYjNfwMDANN8AVZKxguExiGYR/sDAwOcvAGK7XIDJsgcw7D8ApFlVfzAwCM0HG8yysAEqe16AQR+kgZ3xEwNbwHqIIMvKBAgDaJY+yLJklt8MfB2foXpYTCHS8gIM+SBZR6aPDFu4P8IsZDI9AJXtB8kGsX3leMD5Ce5aJuMDEFmwyQUMnzkTuD4gZIORZNkMGJYrQkyBmgx2PdDB+hOAzhBgsDdg2C8AleSGuqp9AsP+DQwMXQIMQL/GQ8ORZSnUR5y1DOFA3/7/zyDJsB5IooYG7yvXGoz4aoAzeYQYGADRdjuTYajQpgAAAABJRU5ErkJggg==» /> и такие, что для всех имеем

Изображением функции-оригинала по Лапласу называется функция комплексного переменного , определяемая равенством

при s_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAFIAAAATBAMAAADxBkdhAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAQcCBEFor0KCR6LBxSK9m8wAAAVlJREFUKM9jYCAaJBsbGx8jSqVj71LRWVuIUiqrwMB6iViVDHcT0AQNcaoUQBN0LsVh+3UGBlYlVSAnqUVaFarUASrPuKkFprJQ8JQKA0NUQmwAA0vBpZZciPnOxVClUQmzYSoXW1xyYGC7ycBewMB65DYD7waIOCtUaTHDDQY2EajtQMR8WVD6AgNj6lUGXgWoEawVYKWrpiYw9AglQFSyX2PgvGFsbMDAwHmFQXYDTKUGWOXZuwVsC1gVICqZ7jAw3wHLAl1gGwBVWAkOOja38IvMCowXoCpvMrDdYGAAKvGdwLAKotAV6szYCYzXgCovglQWMHBcZ1OYlcDWABRX4FmG6vVTCcwKTGCVsnfvKrDUWgQwX9oElJvb0ZSAGvJOmzUcOCFmgkP3IBCDDClngxjVipSEGBig7kQGLDexJg2g3zegCfFcxZ6KZoSjJ6FJShOwGwqMIwCRZlRL/vuSSQAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />. Условие 3 обеспечивает существование интеграла (2).

Преобразование (2), ставящее в соответствие оригиналу его изображение , называется преобразованием Лапласа. При этом пишут .

Свойства преобразования Лапласа

Всюду в дальнейшем считаем, что

I. Свойство линейности. Для любых комплексных постоянных и

II. Теорема подобия. Для любого постоянного 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAAQBAMAAABNQoq8AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAcGe2BFbQSGBMfCxcU2qjNsAAADDSURBVBjTY2AgDYgvxCHB5WyyALtM9wW2HUhcDgs4006A8TGyyprjAlCWiwCjCpDNekkzACLQrA6RYnwkwKgHZK42DVFghkq5CcBlAhi4NjOwPSuGGtMJlmJ/xMCgV8DA9JSB6yXc8kg3IMEKkelTAOo2gMv4Iuypm8DA+DoArgVkGiPQbdpgGdY3DDAXQP3DAPKPiAFjkRMbiqsZ1iWwPweGkY+RafYxEL8IJsHA5jklAeSShQysIHtYEaHD2JbKwAAA/gYrl5lLD9QAAAAASUVORK5CYII=» />

III. Дифференцирование оригинала. Если есть оригинал, то

Обобщение: если раз непрерывно дифференцируема на и если есть оригинал, то

IV. Дифференцирование изображения равносильно умножению оригинала на «минус аргумент», т.е.

V. Интегрирование оригинала сводится к делению изображения на

VI. Интегрирование изображения равносильно делению на оригинала:

(предполагаем, что интеграл сходится).

VII. Теорема запаздывания. Для любого положительного числа

VIII. Теорема смещения (умножение оригинала на показательную функцию). Для любого комплексного числа

IX. Теорема умножения (Э. Борель). Произведение двух изображений и также является изображением, причем

Интеграл в правой части (14) называется сверткой функций и и обозначается символом

Теорема XI утверждает, что умножение изображений равносильно свертыванию оригиналов , т.е.

Отыскание оригиналов дробно-рациональных изображений

Для нахождения оригинала по известному изображению , где есть правильная рациональная дробь, применяют следующие приемы.

1) Эту дробь разлагают на сумму простейших дробей и находят для каждой из них оригинал, пользуясь свойствами I–IX преобразования Лапласа.

2) Находят полюсы этой дроби и их кратности . Тогда оригиналом для будет функция

где сумма берется по всем полюсам функции .

В случае, если все полюсы функции простые, т.е. , последняя формула упрощается и принимает вид

Пример 1. Найти оригинал функции , если

Решение. Первый способ. Представим в виде суммы простейших дробей

и найдем неопределенные коэффициенты . Имеем

Полагая в последнем равенстве последовательно , получаем

Находя оригиналы для каждой из простейших дробей и пользуясь свойствам линейности, получаем

Второй способ. Найдем полюсы функции . Они совпадают с нулями знаменателя . Таким образом, изображение имеет четыре простых полюса . Пользуясь формулой (17), получаем оригинал

Пример 2. Найти оригинал , если .

Решение. Данная дробь имеет полюс кратности и полюс кратности . Пользуясь формулой (16), получаем оригинал

2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение дифференциального уравнения второго порядка с постоянными коэффициентами

Будем считать, что функция и решение вместе с его производньь ми до второго порядка включительно являются функциями-оригиналами. Пусть . По правилу дифференцирования оригиналов с учетом (2) имеем

Применяя к обеим частям (1) преобразование Лапласа и пользуясь свойством линейности преобразования, получаем операторное уравнение

Решая уравнение (20), найдем операторное решение

Находя оригинал для , получаем решение уравнения (18), удовлетворяющее начальным условиям (19).

Аналогично можно решить любое уравнение n-го порядка с постоянными коэффициентами и с начальными условиями при .

Пример 3. Решить дифференциальное уравнение операторным методом

Решение. Пусть , тогда по правилу дифференцирования оригинала имеем

Известно, что поэтому, переходя отданной задачи (21)–(22) к операторному уравнению, будем иметь

Легко видеть, что функция удовлетворяет данному уравнению и начальному условию задачи.

Пример 4. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

Отсюда находим операторное решение

Разлагаем правую часть на элементарные дроби:

Переходя к оригиналам, получаем искомое решение .

Пример 5. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

и, следовательно, операторное решение

Разложим правую часть на элементарные дроби:

Переходя к оригиналам, получим решение поставленной задачи

3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение системы двух уравнений с постоянными коэффициентами

удовлетворяющее начальным условиям

Будем предполагать, что функции , а также и являются функциями-оригиналами.

По правилу дифференцирования оригиналов с учетом (24) имеем

Применяя к обеим частям каждого из уравнений системы (23) преобразование Лапласа, получим операторную систему

Эта система является линейной алгебраической системой двух уравнений с двумя неизвестными и . Решая ее, мы найдем и , а затем, переходя к оригиналам, получим решение системы (23), удовлетворяющее начальным условиям (24). Аналогично решаются линейные системы вида

Пример 6. Найти решение системы дифференциальных уравнений операторным методом

удовлетворяющее начальному условию .

Решение. Так как и , то операторная система будет иметь вид

Решая систему, получаем

Разлагаем дроби, стоящие в правых частях, на элементарные:

Переходя к оригиналам, получим искомое решение


источники:

http://www.matburo.ru/ex_ma.php?p1=maoper

http://mathhelpplanet.com/static.php?p=reshenie-du-i-sistem-operatornym-metodom