Как приравнивать к общему знаменателю в уравнении

Решение уравнений с переменной в знаменателе дроби

Вы будете перенаправлены на Автор24

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

Приведя дроби к общему знаменателю

Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Решение:

1.Перенесем дробь из правой части уравнения в левую

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним , что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3=<2х>^2+6х+3х+9\]

Приведем подобные слагаемые в полученном выражении

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3=<2х>^2+6х+3х+9=\] \[<=2х>^2+9х+9\]

Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

$\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1=<2х>^2-х-10х+5=<2х>^2-11х+5$

Тогда уравнение примет вид:

Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми , стоящими в скобках на противоположные

Приведем подобные слагаемые

Тогда дробь примет вид

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

Решим линейное уравнение:

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и ,конечно, не был бы включен в ответ.

Ответ:$-0,2.$

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

Приравнять числитель к $0$ и найти корни получившегося уравнения.

Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Используем данное свойство для решения этого задания

1.Найдем и приравняем произведение крайних и средних членов пропорции.

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной .

Из предыдущего решения (1 способ) мы уже нашли , что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

Ответ:$-0,2.$

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 12 05 2021

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Приведение дроби к наименьшему общему знаменателю: правило, примеры решений

    В данной статье рассказывается, как привести дроби к общему знаменателю и как найти наименьший общий знаменатель. Приведены определения, дано правило приведения дробей к общему знаменателю и рассмотрены практические примеры.

    Что такое приведение дроби к общему знаменателю?

    Обыкновенные дроби состоят из числителя — верхней части, и знаменателя — нижней части. Если дроби имеют одинаковый знаменатель, говорят, что они приведены к общему знаменателю. Например, дроби 11 14 , 17 14 , 9 14 имеют одинаковый знаменатель 14 . Другими словами, они приведены к общему знаменателю.

    Если же дроби имеют разные знаменатели, то их всегда можно привести к общему знаменателю при помощи нехитрых действий. Чтобы сделать это, нужно числитель и знаменатель умножить на определенные дополнительные множители.

    Очевидно, что дроби 4 5 и 3 4 не приведены к общему знаменателю. Чтобы это сделать, нужно с использованием дополнительных множителей 5 и 4 привести их к знаменателю 20. Как именно сделать это? Умножим числитель и знаменатель дроби 4 5 на 4 , а числитель и знаменатель дроби 3 4 умножим на 5 . Вместо дробей 4 5 и 3 4 получим соответственно 16 20 и 15 20 .

    Приведение дробей к общему знаменателю

    Приведение дробей к общему знаменателю — это умножение числителей и знаменателей дробей на такие множители, что в результате получаются идентичные дроби с одинаковым знаменателем.

    Общий знаменатель: определение, примеры

    Что такое общий знаменатель?

    Общий знаменатель дробей — это любое положительное число, которое является общим кратным всех данных дробей.

    Другими словами, общим знаменателем какого-то набора дробей будет такое натуральное число, которое без остатка делится на все знаменатели этих дробей.

    Ряд натуральных чисел бесконечен, и поэтому, согласно определению, каждый набор обыкновенных дробей имеет бесконечное множество общих знаменателей. Иначе говоря, существует бесконечно много общих кратных для всех знаменателей исходного набора дробей.

    Общий знаменатель для нескольких дробей легко найти, пользуясь определением. Пусть есть дроби 1 6 и 3 5 . Общим знаменателем дробей будет любое положительное общее кратное для чисел 6 и 5 . Такими положительными общими кратными являются числа 30, 60, 90, 120, 150, 180, 210 и так далее.

    Пример 1. Общий знаменатель

    Можно ди дроби 1 3 , 21 6 , 5 12 привести к общему знаменателю, который равен 150 ?

    Чтобы выяснить, так ли это, нужно проверить, является ли 150 общим кратным для знаменателей дробей, то есть для чисел 3 , 6 , 12 . Другими словами, число 150 должно без остатка делиться на 3 , 6 , 12 . Проверим:

    150 ÷ 3 = 50 , 150 ÷ 6 = 25 , 150 ÷ 12 = 12 , 5

    Значит, 150 не является общим знаменателем указанных дробей.

    Наименьший общий знаменатель

    Наименьшее натуральное число из множества общих знаменателей какого-то набора дробей называется наименьшим общим знаменателем.

    Наименьший общий знаменатель

    Наименьший общий знаменатель дробей — это наименьшее число среди всех общих знаменателей этих дробей.

    Наименьший общий делитель данного набора чисел — это наименьшее общее кратное (НОК). НОК всех знаменателей дробей является наименьшим общим знаменателем этих дробей.

    Как найти наименьший общий знаменатель? Его нахождение сводится к нахождению наименьшего общего кратного дробей. Обратимся к примеру:

    Пример 2. Найти наименьший общий знаменатель

    Нужно найти наименьший общий знаменатель для дробей 1 10 и 127 28 .

    Ищем НОК чисел 10 и 28 . Разложим их на простые множители и получим:

    10 = 2 · 5 28 = 2 · 2 · 7 Н О К ( 15 , 28 ) = 2 · 2 · 5 · 7 = 140

    Как привести дроби к наименьшему общему знаменателю

    Существует правило, которое объясняет, как привести дроби к общему знаменателю. Правило состоит из трех пунктов.

    Правило приведения дробей к общему знаменателю

    1. Найти наименьший общий знаменатель дробей.
    2. Для каждой дроби найти дополнительный множитель. Чтобы найти множитель нужно наименьший общий знаменатель разделить на знаменатель каждой дроби.
    3. Умножить числитель и знаменатель на найденный дополнительный множитель.

    Рассмотрим применение этого правила на конкретном примере.

    Пример 3. Приведение дробей к общему знаменателю

    Есть дроби 3 14 и 5 18 . Приведем их к наименьшему общему знаменателю.

    По правилу, сначала найдем НОК знаменателей дробей.

    14 = 2 · 7 18 = 2 · 3 · 3 Н О К ( 14 , 18 ) = 2 · 3 · 3 · 7 = 126

    Вычисляем дополнительные множители для каждой дроби. Для 3 14 дополнительный множитель находится как 126 ÷ 14 = 9 , а для дроби 5 18 дополнительный множитель будет равен 126 ÷ 18 = 7 .

    Умножаем числитель и знаменатель дробей на дополнительные множители и получаем:

    3 · 9 14 · 9 = 27 126 , 5 · 7 18 · 7 = 35 126 .

    Приведение нескольких дробей к наименьшему общему знаменателю

    По рассмотренному правилу к общему знаменателю можно приводить не только пары дробей, но и большее их количество.

    Приведем еще один пример.

    Пример 4. Приведение дробей к общему знаменателю

    Привести дроби 3 2 , 5 6 , 3 8 и 17 18 к наименьшему общему знаменателю.

    Вычислим НОК знаменателей. Находим НОК трех и большего количества чисел:

    Н О К ( 2 , 6 ) = 6 Н О К ( 6 , 8 ) = 24 Н О К ( 24 , 18 ) = 72 Н О К ( 2 , 6 , 8 , 18 ) = 72

    Далее вычислим дополнительные множители для каждой дроби.

    Для 3 2 дополнительный множитель равен 72 ÷ 2 = 36 , для 5 6 дополнительный множитель равен 72 ÷ 6 = 12 , для 3 8 дополнительный множитель равен 72 ÷ 8 = 9 , наконец, для 17 18 дополнительный множитель равен 72 ÷ 18 = 4 .

    Умножаем дроби на дополнительные множители и переходим к наименьшему общему знаменателю:

    3 2 · 36 = 108 72 5 6 · 12 = 60 72 3 8 · 9 = 27 72 17 18 · 4 = 68 72


    источники:

    http://skysmart.ru/articles/mathematic/reshenie-uravnenij-s-drobyami

    http://zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/privodim-drobi-k-naimenshemu-obschemu-znamenatelju/