Как разложить на множители уравнение 8 класс

Разложение квадратного трёхчлена на множители

Алгоритм разложения квадратного трёхчлена на множители с помощью дискриминанта

Данный алгоритм является универсальным.

На входе: квадратный трёхчлен $ax^2+bx+c$

Задача: разложить трёхчлен на множители

Шаг 1. Находим дискриминант $D = b^2-4ac$

Шаг 2. Если $D \gt 0, x_1,2 = \frac<-b \pm \sqrt> <2a>$ и $ax^2+bx+c = a(x-x_1 )(x-x_2 )$

Если D = 0, $x_0 = — \frac<2a>$ и $ax^2+bx+c = a(x-x_0 )^2$

Если $D \lt 0$, разложение на множители невозможно.

Шаг 3. Работа завершена.

Алгоритм разложения квадратного трёхчлена на множители по теореме Виета

Данный алгоритм применяется в частных случаях.

Если один (или оба) корня квадратного уравнения целые, то полезным навыком становится разложение на множители «в уме», с помощью теоремы Виета.

Навык этот не простой, и если у вас сразу не получится, не расстраивайтесь.

Рассмотрим следующий трёхчлен: $x^2+8x+15$

Если корни трёхчлена существуют, то их произведение равно 15.

Прикинем «в уме» соответствующие пары натуральных чисел:

В трёхчлене $c \gt 0$, значит корни одного знака, и в построении b участвует сумма этих корней. Из пары (1;15) сумма 8 не выходит, а вот из пары (3;5) — получается.

Для выбранной пары (3;5) запишем разложение, пока без знаков:

Теперь видно, что знаки в скобках – два плюса:

Рассмотрим другой трёхчлен: $x^2+2x-35$

Пары натуральных чисел, дающие произведение 35:

В трёхчлене $c \lt 0$, значит корни разных знаков, и в построении b участвует разность этих корней. Из пары (1;35) разность 2 не выходит, а вот из пары (5;7) — получается.

Для выбранной пары (5;7) запишем разложение, пока без знаков:

Теперь видно, что 7 должно быть с плюсом, а 5 – с минусом:

Обобщим алгоритм разложения по теореме Виета.

На входе: приведенный квадратный трёхчлен $x^2+bx+c$

Задача: разложить трёхчлен на множители при гипотезе, что корни — целочисленные

Шаг 1. Записать все пары натуральных чисел (m;n), дающих в произведении c.

Шаг 2. Если $c \gt 0$, то из всех пар выбрать ту, сумма которой даёт b.

Если $c \lt 0$, то из всех пар выбрать ту, разность которой даёт b.

Если выбрать пару не удаётся, данный алгоритм не подходит, и нужно приступить к разложению с помощью дискриминанта.

Шаг 3. Для выбранной пары записать разложение без знаков в виде:

Сопоставляя левую и правую части, окончательно расставить знаки в скобках.

Шаг 4. Работа завершена.

Предложенный алгоритм позволяет не только раскладывать на линейные множители трёхчлены, но и находить их корни, т.е. решать соответствующие квадратные уравнения.

Не забывайте менять знаки при записи решений уравнения!

Решаем $x^2+8x+15 = 0$. Получаем (x+3)(x+5) = 0. Корни $x_1 = -3, x_2 = -5$.

Решаем $x^2+2x-35 = 0$. Получаем (x-5)(x+7) = 0. Корни $x_1 = 5, x_2 = -7$.

При некотором опыте, можно наловчиться раскладывать не только приведенные трёхчлены, например:

$$ 5x^2-14x-3 = (5x+1)(x-3), 3x^2+13x-10 = (3x-2)(x+5), $$

В этих случаях алгоритм усложняется за счёт дополнительных вариантов расстановки коэффициентов при переменной в скобках.

Примеры

Пример 1. Разложите квадратный трёхчлен с помощью дискриминанта:

$ D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2 $

$ x = \frac<-7 \pm 9> <4>= \left[ \begin x_1 = -4 \\ x_2 = \frac<1> <2>\end \right. $

Получаем: $2x^2+7x-4 = 2(x+4) \left(x- \frac<1> <2>\right)$

Можно также записать: $2x^2+7x-4 = (x+4)(2x-1)$

$ D = 20^2-4 \cdot 3 \cdot (-7) = 400+84 = 484 = 22^2 $

$x = \frac<-20 \pm 22> <6>= \left[ \begin x_1 = -7 \\ x_2 = \frac<1> <3>\end \right.$

Получаем: $3x^2+20x-7 = 3(x+7) \left(x-\frac<1> <3>\right)$

Можно также записать: $3x^2+20x-7 = (x+7)(3x-1)$

$D = 19^2-4 \cdot 4 \cdot (-5) = 361+80 = 441 = 21^2$

$ x = \frac<19 \pm 21> <8>= \left[ \begin x_1 = -\frac<1> <4>\\ x_2 = 5 \end \right.$

Получаем: $4x^2-19x-5 = 4 \left(x+ \frac<1> <4>\right)(x-5)$

Можно также записать: $4x^2-19x-5 = (4x+1)(x-5)$

$ D = (\sqrt<2>)^2-4 \cdot \frac<1> <2>= 2-2 = 0, x = \frac<\sqrt<2>> <2>$

Получаем: $x^2-\sqrt <2>x+ \frac<1> <2>= \left(x- \frac<\sqrt<2>> <2>\right)^2 $

Пример 2*. Разложите трёхчлены на множители подбором по теореме Виета:

Пары множителей: (1;12),(2;6),(3;4)

$c = 12 \gt 0 \Rightarrow$ выбираем из пар ту, что в сумме дает b = 7. Это пара (3;4).

Записываем разложение без знаков: $(x…3)(x…4) = x^2+7x+12$

Расставляем знаки, результат: $x^2+7x+12 = (x+3)(x+4)$

Пары множителей: (1;18),(2;9),(3;6)

$c = -18 \lt 0 \Rightarrow$ выбираем из пар ту, разность которой дает b = 3. Это пара (3;6).

Записываем разложение без знаков: $(x…3)(x…6) = x^2+3x-18$

Расставляем знаки, результат: $x^2+3x-18 = (x-3)(x+6)$

Пары множителей: (1;77),(7;11)

$c = -18 \lt 0 \Rightarrow$ выбираем из пар ту, разность которой дает b=4. Это пара (7;11).

Записываем разложение без знаков: $(x…7)(x…11) = x^2+4x-77$

Расставляем знаки, результат: $x^2+4x-77 = (x-7)(x+11)$

Одна пара множителей (1;3)

Возможные разложения с коэффициентом:

$c = -3 \lt 0$, в скобках разные знаки.

Перебираем четыре возможных варианта и получаем:

$$2x^2-x-3 = (2x+3)(x-1) = 2 \left(x+ \frac<3> <2>\right)(x-1)$$

Пример 3. Сократите дробь.

Разложение на множители проводим по формулам сокращенного умножения, с помощью дискриминанта или по теореме Виета.

Разложение квадратного трёхчлена на множители

Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида ax 2 + bx + c .

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

Где левая часть — исходный квадратный трёхчлен.

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

Итак, x1 = 6 , x2 = 2 . Теперь воспользуемся формулой ax 2 + bx + c = a(xx1)(xx2). В левой части вместо выражения ax 2 + bx + c напишем свой квадратный трёхчлен x 2 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2

Если a равно единице (как в данном примере), то решение можно записать покороче:

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2) . Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x 2 8x + 12

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

Итак, x1 = 4 , x2 = 3 . Приравняем квадратный трехчлен 2x 2 − 14x + 24 к выражению a(xx1)(xx2) , где вместо переменных a , x1 и x2 подстáвим соответствующие значения. В данном случае a = 2

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24

Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Тогда приведённый квадратный трехчлен x 2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b . Для этого можно умножить обе его части на −1

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c

Раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Из первых скобок вынесем общий множитель x , из вторых скобок — общий множитель −x2

Далее замечаем, что выражение ( xx1 ) является общим множителем. Вынесем его за скобки:

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax 2 + bx + c = 0 , то теорема Виета принимает следующий вид:

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a

Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и

Для начала выразим b и c . В первом равенстве умножим обе части на a . Затем обе части получившегося равенства умножим на −1

Теперь из второго равенства выразим c . Для этого умножим обе его части на a

Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax 2 + bx + c . Для наглядности каждое преобразование будем выполнять на новой строчке:

Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2 , которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Теперь из первых скобок вынесем общий множитель ax , а из вторых — общий множитель −ax2

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

Вторые скобки содержат общий множитель a . Вынесем его за скобки. Его можно расположить в самом начале выражения:

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(xx1)(xx2) вместо переменных x1 и x2 .

Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2 . Например, квадратный трёхчлен x 2 + 4x + 4 имеет только один корень −2

Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2 . А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:

Скобки внутри скобок можно раскрыть. Тогда получим следующее:

При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x 2 − 2x − 1 , а в правой части — его разложение в виде a(xx1)(xx2) , где вместо a , x1 и x2 подстáвим соответствующие значения:

Во вторых скобках можно заменить вычитание сложением:

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

Пример 3. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Пример 4. Найдите значение k , при котором разложение на множители трёхчлена 3x 2 − 8x + k содержит множитель (x − 2)

Если разложение содержит множитель (x − 2) , то один из корней квадратного трёхчлена равен 2 . Пусть корень 2 это значение переменной x1

Чтобы найти значение k , нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

Теперь из второго равенства выразим k . Так мы найдём его значение.

Пример 5. Разложить на множители следующий квадратный трёхчлен:

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Как разложить на множители уравнение 8 класс

Составим произведение многочленов

Представим это произведение в виде многочлена. С этой целью обозначим многочлен буквой х и воспользуемся правилом умножения одночлена на многочлен:

В выражение подставим вместо х многочлен и снова воспользуемся правилом умножения одночлена на многочлен:

Произведение многочленов и мы представили в виде многочлена . Этот многочлен является суммой всех одночленов, получающихся при умножении каждого члена многочлена на каждый член многочлена .

Вообще, произведение любых двух многочленов можно представить в виде многочлена.

При умножении многочлена на многочлен пользуются правилом:

Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Умножим многочлен на многочлен

РАЗЛОЖЕНИЕ МНОГОЧЛЕНА НА МНОЖИТЕЛИ СПОСОБОМ ГРУППИРОВКИ

Иногда удается разложить многочлен на множители, используя группировку его членов.

Пусть требуется разложить на множители многочлен Для этого попытаемся сгруппировать его члены так, чтобы слагаемые в каждой группе имели общий множитель:

В первой группе вынесем за скобки множитель b, а во второй — множитель 3:

Мы представили многочлен в виде суммы , в которой оба слагаемых имеют общий множитель Вынесем этот множитель за скобки:

Способ, с помощью которого мы разложили многочлен на множители, называют способом группировки.

Разложение многочлена а на множители можно выполнить, группируя его члены иначе:

Приведем еще один пример.

Разложим на множители многочлен Сгруппируем первый член многочлена с третьим и второй с четвертым.

В первой группе вынесем за скобки множитель с, а во второй — множитель — d. Получим:

Заметим, что при группировке слагаемых можно сразу перед второй скобкой поставить знак «минус» и вынести за скобки во второй группе множитель d. Получим:


источники:

http://spacemath.xyz/razlozhenie-kvadratnogo-tryohchlena-na-mnozhiteli/

http://forkettle.ru/vidioteka/estestvoznanie/matematika/181-algebra/algebra-7-9-klassy/1884-algebra-7-9-klassy-8-sposoby-razlozheniya-mnogochlena-na-mnozhiteli