Как решали уравнения в древней индии

Как решали уравнения в древней индии

В Индии задачи на квадратные уравнения встречаются с глубокой древности. И именно индийцы впервые исследовали эти уравнения с любыми коэффициентами, как положительными, так и отрицательными.

Общее правило решения уравнений вида: , где , – любые, сформулировал Брахмагупта (VII в. н. э.).

Вот как оно выводилось. Умножим обе части уравнения на :

прибавим к каждой части :

Так как левая часть обращается в квадрат, то:

Брахмагупта еще не знал, что квадратный корень может иметь два значения – положительное и отрицательное – и что, соответственно, у квадратного уравнения также может быть два корня.

Однако математик IX в. Магавира уже знал не только о двузначности квадратного корня, но и о двух решениях квадратного уравнения: а ведь ни египтяне, ни вавилоняне, ни греки (даже Диофант) этого не заметили.

Вот одна из задач Магавиры, в которой проявляется эта двузначность: «Найти число павлинов в стае, 1/16 которой, умноженная на себя, сидит на манговом дереве, а квадрат одной девятой остатка вместе с 14 другими павлинами – на дереве тамала».

Сумеете ли Вы решить задачу?

Пусть в стае павлинов. Тогда, по условию,

Преобразуя это выражение, приходим к уравнению:

корни которого можно вычислить по формуле:

Ответом в задаче служит только , т. к. число павлинов не может быть дробным.

Бхаскара Ачарья (XII в.) сформулировал, соотношения между коэффициентами уравнения, при которых оно имеет два положительных корня. Знаете ли вы, когда это бывает?

Хороший современный школьник, знающий теорему Виета, наверное, ответил бы на вопрос так: два действительных числа оба больше нуля тогда и только тогда, когда и их сумма, и их произведение больше нуля. Согласно теореме Виета, сумма корней квадратного уравнения

равна , а их произведение (). Таким образом, чтобы оба корня были больше нуля, нужно, чтобы коэффициенты при и имели разные знаки, а коэффициент при и свободный член – одинаковые. Следует отметить, что при этих условиях уравнение всегда имеет два различных действительных корня: , а значит, .

Если, на манер индийских математиков, мы рассматриваем квадратное уравнение в виде:

тогда условия, при которых у уравнения два положительных корня, выписываются совсем просто: числа и должны быть отрицательными.

Вот одна из задач, составленных Бхаскарой. Прежде, чем находить решение, попробуйте определить, сколько их.

«На две партии разбившись,

Часть восьмая их в квадрате

В роще весело резвилась.

Криком радостным двенадцать

Воздух свежий оглашали.

Вместе сколько, ты мне скажешь,

Обезьян там было в роще?»

Пусть в стае обезьян. Тогда, по условию,

Преобразуя выражение, приходим к уравнению

Согласно вышеприведенному критерию, у этого уравнения два положительных корня.

Сами корни можно вычислить по формуле

На европейскую алгебру непосредственное влияние оказала арабская математика и, прежде всего, основополагающий трактат «Краткая книга об исчислении и . и – две операции, которые используются при решении уравнений: (дословно «восполнение») – это перенос вычитаемых членов уравнения в другую часть в виде прибавляемых членов; («противопоставление») – это сокращение равных членов в обеих частях (обе операции встречаются уже у Диофанта). Слово «алгебра» произошло от термина , также как слово «алгоритм» – от имени .

Арабы, в отличие от индийцев, не рассматривали отрицательных чисел. С помощью и приводил уравнения к одной из шести форм, в которых обе части содержат лишь положительные члены, и рассматривал каждую из этих форм отдельно. При этом все квадратные уравнения разбиваются на шесть классов, каждый из которых соответствует одной из этих форм (везде ):

1)(в терминологии ал-Хорезми «квадраты равны корням»);
2)(«квадраты равны числу»);
3)(«корни равны числу»);
4)(«квадраты и корни равны числу»);
5)(«квадраты и числа равны корням»);
6)(«корни и числа равны квадратам»).

Алгебраических обозначений не было, все записывалось словами; например, четвертую форму ал-Хорезми обозначал так: «квадраты и корни равны числу». Правила решения уравнения в каждой из форм формулировались для случая, когда коэффициент при старшем члене равен 1; соответственно, в противном случае надо было поделить обе части уравнения на . Среди корней рассматривались только положительные. Ал-Хорезми установил, сколько корней имеет уравнение каждого из шести классов, и при каких условиях. А вы можете это сделать?

Нетрудно видеть, что уравнения первых трех классов всегда имеют единственный положительный корень, равный: 1) /; 2) 3) .

Для рассмотрения последних трех классов будем считать для простоты, что , и перепишем уравнения в виде:

В четвертом классе в пятом ; в шестом , . В четвертом и шестом классах , поэтому дискриминант , и существует два действительных корня. По теореме Виета, произведение корней отрицательно, корни имеют разные знаки. Таким образом, уравнения этих классов имеют единственный положительный корень.

В пятом классе дискриминант может быть как больше, так и меньше нуля, – в зависимости от этого корни существуют либо нет. Если они существуют, то, по теореме Виета, и их сумма , и произведение больше нуля, а значит, оба корня тоже больше нуля. Итак, в пятом классе существует либо два положительных корня, либо один, либо ни одного – в зависимости от знака дискриминанта, то есть от того, что больше, или .

Поскольку у ал-Хорезми не было алгебраических обозначений, он формулировал правила нахождения корней для каждого из его классов на примере конкретных уравнений; тем не менее, правила носили общий характер. Обоснование проводилось с помощью преобразований геометрических фигур, что напоминало античную геометрическую алгебру. Например, вот как обосновывается решение уравнения четвертого класса:

Рисуется квадрат со стороной , на каждой из четырех его сторон строится прямоугольник со сторонами и 10/4, а в углах – четыре квадрата со сторонами 10/4. Тогда площадь центрального квадрата будет равняться , площадь четырех прямоугольников , площадь четырех угловых квадратов . Если площадь центрального квадрата вместе с четырьмя прямоугольниками равна 39, то площадь всего большого квадрата равна , а значит, его сторона равна 8. Зная это, можно найти:

Ясно, что данный ход решения не зависит от конкретных чисел. Пусть уравнение имеет вид:

Тогда каждый из четырех прямоугольников, имеющих вместе площадь должен иметь стороны и каждый угловой квадрат будет иметь сторону площадь а все четыре вместе – площадь Если площадь центрального квадрата и четырех прямоугольников равна то площадь всего большого квадрата равна его сторона а сторона центрального квадрата что соответствует формуле единственного положительного корня квадратного уравнения

В дальнейшем арабские математики для обоснования правил решения квадратных уравнений использовали и другие геометрические методы, в т. ч. восходящие к античному приложению площадей (которое, впрочем, представляло аналог уравнениям 4-го и 5-го, но не 6-го класса). Так, например, поступал Омар Хайям, с этой целью приводивший решение задачи о приложении с недостатком в простейшей форме, когда недостаток является квадратом: построить на данном отрезке два прямоугольника равной высоты, один из которых квадрат, а другой равновелик данному квадрату, т. е. при данных отрезках и найти построением отрезок такой, что . Ход решения, в общем, совпадает с евклидовым; Хайям в явном виде указывает, как строить квадрат, равный разности площадей квадратов со сторонами и : а именно, для этого надо построить прямоугольный треугольник с гипотенузой и вторым катетом . Квадрат, построенный на другом катете, и есть искомый.

Квадратные уравнения в Индии

Способов решения квадратных уравнений

Автор: Реутова Екатерина Викторовна, 11 кл.

Руководитель: Патрикеева Галина Анатольевна,

Содержание

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

1.2 Как составлял и решал Диофант квадратные уравнения

1.3 Квадратные уравнения в Индии

1.4 Квадратные уравнения у ал- Хорезми

1.5 Квадратные уравнения в Европе XIII — XVII вв

1.6 О теореме Виета

2. Способы решения квадратных уравнений

История развития квадратных уравнений

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ¾; X 2 — X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 — х. Разность между ними .

(10 + х)(10 — х) = 96

100 — х 2 = 96

х 2 — 4 = 0 (1)

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у 2 — 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + bх = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

Бхаскара пишет под видом:

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

Презентация «Решение уравнений в Древней Индии, Греции, Китае»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Колобова Татьяна Евгеньевна, учащаяся 8 > класса Руководитель: Рыбакова Наталья Александровна г. Арзамас 2017

Математика – древний, важный и сложный компонент культуры человека. Она появилась из необходимости практической деятельности человека. Изучая историю математики, мы знакомимся с благородными идеями многих поколений. Мне приходиться делить время между политикой и уравнениями. Однако уравнения гораздо важнее. Политика существует только для данного момента, а уравнения будут существовать вечно. А. Эйнштейн

Математика древних греков удивляет в первую очередь богатством своего содержания Древняя Греция

Диофантовы уравнения Диофант Александрийский Математик Древней Греции. Некоторые называют его «отцом алгебры ». Создатель «Арифметики», которая состоит из 13 книг. Пример: 1) 5x + 35y=40 Решение: Наибольший общий делитель (5, 35) = 5, 40 можно поделить на 5, значит, у этого уравнения есть корни, Например: x=1, y=1

Решение квадратных уравнений с помощью геометрии x 2 В древние времена, когда геометрия была более изучаема, чем алгебра, математики Древней Греции решали уравнение вот так: x² + 4x — 21 = 0 x² + 4x = 21, или x² + 4x +4=21+4 Решение: Выражения x² + 4x +4 и 21+4 геометрически представляют тот же самый квадрат, а исходное уравнение x² +4x –21 +4 –4 = 0 – одинаковые уравнения. Получается, что x + 2 = ±5, или х1 = 3 х2 = -7

Творчество математиков Индии значительно повлияло на развитие арифметики, алгебры и тригонометрии Индийские математики Брахмагупта Ариабхата Древняя Индия

Математики Индии в отличие от греческих математиков вывели более простую формулу решения квадратных уравнений. Она встречается в школьных учебниках. Но, не все индийские математики решали именно по этой формуле. Например, Бхаскара решал квадратные уравнения вот так: x2 — 44х + 484 = -684 + 1008, (х — 22)2 = 324, х — 22= ±18, x1 = 4, x2 = 40. Формула корней квадратного уравнения

Магавира при решении систем линейных уравнений использовал метод, который не отличается от метода уравнивания коэффициентов. Например: 6x -3y =3 5x +4y =22 1) НОК (3;4) =12, 6x -3y =3 *4 24x -12y =12 5x +4y =22 *3 15x +12y =66 2) + 24x -12y =12 15x +12y =66 39x =78 3) 6*2 -3y =3 x= 2 y=3 Ответ: x=2, y=3 Линейные уравнения

Самые заметные научные открытия китайских учёных: метод численного решения уравнений n -степени (метод Руффини – Горнера); теоретико-числовые задачи на системы сравнений первой степени с одним неизвестным (сравнения Гаусса); метод решения систем линейных уравнений (метод Гаусса); вычисление числа π (пи) Древний Китай

Пример: (y +4)2=y2 +202 Решение китайских учёных предположительно такое: (y +4)2=y2 +202 , y2+8y+16= y2 +400, 8y=384, y=48, Ответ: y=48 Решение уравнений

В ходе работы я узнала много нового и полезного из области математики. Познакомилась с биографией великих математиков. Узнала, каким методом решали уравнения древнегреческие, индийские и китайские математики. Составила и решила уравнения новыми для меня способами. Литература БерезкинаЭ. И. Математика древнего Китая. М.: Наука, 1980 Депман И.Я. История арифметики. — М.: Просвещение, 1965. — 415 с. Панов В. Ф. Математика древняя и юная/ Под ред. В. С. Зарубина. — 2-е изд. —М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. —648 с. Рыбников К.А. Возникновение и развитие математической науки. — М.: Изд-во «Просвещение», 1987. — 159 с. Стройк Д. Я. Краткий очерк истории математики. Пер. с нем.—5- изд., испр.— М.: Наука. Гл. ред. физ.мат. лит., 1990.— 256 с

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 956 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 685 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 572 072 материала в базе

Другие материалы

  • 15.04.2018
  • 962
  • 1

  • 15.04.2018
  • 565
  • 7

  • 15.04.2018
  • 2496
  • 52

  • 15.04.2018
  • 585
  • 3

  • 15.04.2018
  • 366
  • 5
  • 15.04.2018
  • 1006
  • 11

  • 15.04.2018
  • 360
  • 1

  • 15.04.2018
  • 295
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 15.04.2018 7785
  • PPTX 3.8 мбайт
  • 62 скачивания
  • Рейтинг: 1 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Рыбакова Наталья Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 5 лет и 10 месяцев
  • Подписчики: 2
  • Всего просмотров: 17765
  • Всего материалов: 11

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Воронеже продлили удаленное обучение для учеников 5-11-х классов

Время чтения: 1 минута

Профессия педагога на третьем месте по популярности среди абитуриентов

Время чтения: 1 минута

Объявлен конкурс дизайн-проектов для школьных пространств

Время чтения: 2 минуты

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

В школах Хабаровского края введут уроки спортивной борьбы

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://poisk-ru.ru/s35687t18.html

http://infourok.ru/prezentaciya-reshenie-uravneniy-v-drevney-indii-grecii-kitae-2873388.html