Как решать диофантовые уравнения онлайн

Линейные диофантовы уравнения онлайн

Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида:

В основе нашего калькулятора лежит расширенный алгоритм Евклида, записанный в виде цепной дроби. Однако, в некоторых случаях (например, когда коэффициент ) применяются более простые подходы. Также калькулятор не рассматривает случаи, когда хотя бы один из коэффициентов или равен , так как они приводят к обычному линейному уравнению.

Если коэффициент не делится нацело на , то линейное диофантово уравнение с двумя неизвестными не имеет решений. Напротив, если делится нацело на , то указанное уравнение имеет бесконечное множество целых решений.

Для решения линейного диофантового уравнения с двумя неизвестными сначала необходимо найти частное решение и , а затем записать общее решение, используя формулы:

Рассмотрим пример решения линейного диофантового уравнения с двумя неизвестными:

Поскольку делится нацело на , то данное уравнение имеет решения в целых числах.

Далее, найдём какое-нибудь конкретное (частное) решение и исходного уравнения. Для этого, сначала необходимо найти частное решение и вспомогательного уравнения с коэффициентом :

а затем умножить найденное частное решение и вспомогательного уравнения на и получить частное решение и исходного уравнения:

Чтобы найти частное решение вспомогательного уравнения используем цепные дроби. Для этого составим дробь , числителем которой будет коэффициент , а знаменателем коэффициент .

Преобразуем данную дробь в цепную дробь:

В полученной цепной дроби отбросим последнюю дробь :

Полученная дробь является отношением частных решений и выбранных с правильным знаком:

Подставляя четыре значения во вспомогательное уравнение, определяем его частное решение:

Теперь, чтобы найти частное решение и исходного уравнения, умножим найденное частное решение и вспомогательного уравнения на :

Используя формулы для общего решения, запишем конечный ответ:

Наш онлайн калькулятор может решить любое линейное диофантово уравнение с двумя неизвестными с описанием подробного хода решения на русском языке. Чтобы начать работу, необходимо ввести уравнение и задать искомые переменные.

Решение Диофантова уравнения по математике

Диофант Александрийский — древнегреческий математик, который жил еще в III веке н. э. О нем говорят как об «отце алгебры». Это автор «Арифметики» — книги, которая посвящена нахождению положительных рациональных решений неопределённых уравнений. Диофант — первый греческий математик, который рассматривал дроби наравне с другими числами. Он первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде. В честь Диофанта назван кратер на видимой стороне Луны.

Диофантово уравнение представляет собой алгебраическое уравнение с налагаемым дополнительным условием, состоящем в том, что все его решения должны представлять собой целые числа. В большинстве случаев данного рода уравнения решаются довольно сложно. Теорема Ферма — это прекрасный пример диофантового уравнения, которое так и не решено спустя 350 лет.

Допустим, нам необходимо решить в целых числах \[(x,y)\] уравнение:

Чтобы решить данного вида задание применим алгоритм Евклида, которое говорит, что для любых двух натуральных чисел \[a, b,\] таких, что \[Н.О.Д.(а,b) = 1\] существуют целые числа \[x, y\] такие, что \[ах + bу = 1.\]

1. Найдем решение уравнения \[5m — 8n = 1,\] применив алгоритм Евклида.

2. Найдем частное решение уравнения (1) по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: \[1 = 5m — 8n.\] Для решения применим алгоритм Евклида.

Из этого равенства выразим

\[ 1 = 3 — 2^1=3-(5-3)^1=3-5^1+3\cdot 1=3^2-5\cdot1=(8-5^1)^2 -5^1=8^2-5\cdot2-5^1=5^x(-3)-8\cdot(-2) \]

2. Частное решение уравнения \[(1): x_о = 19m; y_о =19n.\]

Отсюда получим: \[ x_о =19^x(-3)=57; у_о =19^x(-2)=-38 \]

Пара (-57; -38) — частное решение (1).

3.Общее решение уравнения (1):

Где взять решение диофантова уравнения?

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Линейные диофантовы уравнения с двумя переменными

Калькулятор решает линейные диофантовы уравнения с двумя переменными.

Сначала калькулятор, теория под ним.

Линейные диофантовы уравнения с двумя переменными

Диофантово уравнение с двумя неизвестными имеет вид:

где a, b, c — заданные целые числа, x и y — неизвестные целые числа.

Для нахождения решений уравнения используется Расширенный алгоритм Евклида (исключая вырожденный случай, когда a = b = 0 и уравнение имеет либо бесконечно много решений, либо же не имеет решений вовсе).
Если числа a и b неотрицательны, тогда с помощью расширенного алгоритма Евклида мы можем найти их наибольший общий делитель g, а также такие коэффициенты и , что:
.

Утверждается, что если число c делится на g, то диофантово уравнение имеет решение; в противном случае диофантово уравнение решений не имеет. Это следует из очевидного факта, что линейная комбинация двух чисел по-прежнему должна делиться на их общий делитель.

То есть если c делится на g, тогда выполняется соотношение:

т. е. одним из решений диофантова уравнения являются числа:

Если одно из чисел a и b или они оба отрицательны, то можно взять их по модулю и применить к ним алгоритм Евклида, как было описано выше, а затем изменить знак найденных коэффициентов и в соответствии с настоящим знаком чисел a и b соответственно.

Если мы знаем одно из решений, мы можем получить выражение для всех остальных решений, которых бесконечное множество.

Итак, пусть g = НОД (a,b), выполняется условие:
.

Тогда, прибавив к число и одновременно отняв от , мы не нарушим равенства:

Этот процесс можно повторять сколько угодно, т. е. все числа вида:

,
где k принадлежит множеству целых чисел, являются множеством всех решений диофантова уравнения.


источники:

http://www.pocketteacher.ru/solve-diofantum-equation-ru

http://planetcalc.ru/3303/