Как решать графически логарифмические уравнения

Методика решения логарифмических уравнений

Разделы: Математика

Введение

Увеличение умственной нагрузки на уроках математики заставляет задуматься над тем как поддержать у студентов интерес к изучаемому материалу, их активность на протяжении всего урока. В связи с этим ведутся поиски новых эффективных методов обучения и таких методических приемов, которые активизировали бы мысль студентов, стимулировали бы их к самостоятельному приобретению знаний.

Возникновение интереса к математике у значительного числа студентов зависит в большей степени от методики ее преподавания, от того, на сколько умело будет построена учебная работа. Вовремя обращая внимание студентов на то, что математика изучает общие свойства объектов и явлений окружающего мира, имеет дело не с предметами, а с отвлеченными абстрактными понятиями, можно добиться понимания того, что математика не нарушает связи с действительностью, а, напротив, дает возможность изучить ее глубже, сделать обобщенные теоретические выводы, которые широко применяются в практике.

Участвуя в фестивале педагогических идей «Открытый урок» 2004-2005 учебного года, я представила урок-лекцию по теме «Логарифмическая функция» (диплом № 204044). Считаю этот метод наиболее удачным в данном конкретном случае. В результате изучения у студентов имеется подробный конспект и краткая схема по теме, что облегчит им подготовку к следующим урокам. В частности, по теме «Решение логарифмических уравнений», которая полностью опирается на изучение логарифмической функции и ее свойств.

При формировании основополагающих математических понятий важно создать у студентов представление о целесообразности введения каждого из них и возможности их применения. Для этого необходимо, чтобы при формулировке определения некоторого понятия, работе над его логической структурой, рассматривались вопросы об истории возникновения данного понятия. Такой подход поможет студентам осознать, что новое понятие служит обобщением фактов реальной действительности.

История возникновения логарифмов подробно представлена в работе прошлого года.

Учитывая важность преемственности при обучении математике в среднем специальном учебном заведении и в вузе и необходимость соблюдения единых требований к студентам считаю целесообразным следующую методику ознакомления студентов с решением логарифмических уравнений.

Уравнения, содержащие переменную под знаком логарифма (в частности, в основании логарифма), называются логарифмическими. Рассмотрим логарифмические уравнения вида:

(1)

Решение этих уравнений основано на следующей теореме.

Теорема 1. Уравнение равносильно системе

(2)

Для решения уравнения (1) достаточно решить уравнение

(3)

и его решения подставить в систему неравенств

(4),

задающую область определения уравнения (1).

Корнями уравнения (1) будут только те решения уравнения (3), которые удовлетворяют системе (4), т.е. принадлежат области определения уравнения (1).

При решения логарифмических уравнений может произойти расширение области определения (приобретение посторонних корней) или сужение (потеря корней). Поэтому подстановка корней уравнения (3) в систему (4), т.е. проверка решения, обязательна.

Пример 1: Решить уравнение

Оба значения х удовлетворяют условиям системы.

Ответ:

Рассмотрим уравнения вида:

(5)

Их решение основано на следующей теореме

Теорема 2: Уравнение (5) равносильно системе

(6)

Корнями уравнения (5) будут только те корни уравнения , которые

принадлежат области определения, задаваемой условиями .

Логарифмическое уравнение вида (5) можно решить различными способами. Рассмотрим основные из них.

1. ПОТЕНЦИНИРОВАНИЕ (применение свойств логарифма).

Пример 2: Решить уравнение

Решение: В силу теоремы 2 данное уравнение равносильно системе:

Всем условиям системы удовлетворяет лишь один корень. Ответ:

2. ИСПОЛЬЗОВАНИЕ ОПРЕДЕЛЕНИЯ ЛОГАРИФМА .

Пример 3: Найти х, если

Значение х = 3 принадлежит области определения уравнения. Ответ х = 3

3. ПРИВЕДЕНИЕ К КВАДРАТНОМУ УРАВНЕНИЮ.

Пример 4: Решить уравнение

Оба значения х являются корнями уравнения.

Ответ:

Пример 5: Решить уравнение

Решение: Прологарифмируем обе части уравнения по основанию 10 и применим свойство «логарифм степени».

Оба корня принадлежат области допустимых значений логарифмической функции.

Ответ: х = 0,1; х = 100

5. ПРИВЕДЕНИЕ К ОДНОМУ ОСНОВАНИЮ.

Пример 6: Решить уравнение

Воспользуемся формулой и перейдем во всех слагаемых к логарифму по основанию 2:

Тогда данное уравнение примет вид:

Так как , то это корень уравнения.

Ответ: х = 16

6. ВВЕДЕНИЕ ВСПОМОГАТЕЛЬНОЙ ПЕРЕМЕННОЙ.

Решим способом введения вспомогательной переменной уравнение, заданное в примере 6.

Пусть ; тогда

Учитывая, что

После проверки, проведенной устно, легко убеждаемся в правильности найденного ответа.

Многие уравнения, содержащие переменную не только под знаком логарифма или в показателе степени, удобно решать графически.

Графически решением уравнения являются абсциссы точек пересечения графиков функций, заданных в уравнении.

Пример 7: Решить уравнение

Решение: Построим графики функций и y = x

Графики функций не пересекаются, и, значит, уравнение не имеет корней (см. рисунок).

Ответ: корней нет

Пример 8: Найти х, если

Решение: С помощью рассмотренных выше способов корни уравнения найти не удается. Найдем какой-нибудь корень методом подбора.

Пусть, например, х = 10. Проверкой убедимся в том, что 10 — корень уравнения. Действительно,

истинно

Докажем, что других корней данное уравнение не имеет.

Эти корни следует искать во множестве значений х.

Допустимые значения х находятся в промежутке

На этом промежутке функция убывает, а функция возрастает. И, значит, если уравнение имеет решение, то оно единственное.

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Конспект урока по теме «Методы решения логарифмических уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Методы решения логарифмических уравнений»

§ образовательная: формирование знаний о разных способах решения логарифмических уравнений, умений применять их в каждой конкретной ситуации и выбирать для решения любой способ;

§ развивающая: развитие умений наблюдать, сравнивать, применять знания в новой ситуации, выявлять закономерности, обобщать; формирование навыков взаимоконтроля и самоконтроля;

§ воспитательная: воспитание ответственного отношения к учебному труду, внимательного восприятия материала на уроке, аккуратности ведения записей.

Тип урока : урок ознакомления с новым материалом.

Оборудование : мультимедиа проектор, презентация к уроку.

«Изобретение логарифмов, сократив работу астронома, продлило ему жизнь».
Французский математик и астроном П.С. Лаплас

I. Постановка цели урока

Изученные определение логарифма, свойства логарифмов и логарифмической функции позволят нам решать логарифмические уравнения. Все логарифмические уравнения, какой бы сложности они не были, решаются по единым алгоритмам. Эти алгоритмы рассмотрим сегодня на уроке. Их немного. Если их освоить, то любое уравнение с логарифмами будет посильно каждому из вас.

Запишите в тетради тему урока: «Методы решения логарифмических уравнений». Приглашаю всех к сотрудничеству.

II. Актуализация опорных знаний

Подготовимся к изучению темы урока. Каждое задание вы решаете и записываете ответ, условие можно не писать. Работайте в парах.

(Демонстрируется слайды с заданиями для устной работы).

1) При каких значениях х имеет смысл функция:

а)

б)

в)

д)

(По каждому слайду сверяются ответы и разбираются ошибки)

2) Совпадают ли графики функций?

а) y = x и

б) и

3) Перепишите равенства в виде логарифмических равенств:

4) Запишите числа в виде логарифмов с основанием 2:

5) Вычислите :

III. Ознакомление с новым материалом

Демонстрируется на экране высказывание:

«Уравнение – это золотой ключ, открывающий все математические сезамы».
Современный польский математик С. Коваль

Попробуйте сформулировать определение логарифмического уравнения. ( Уравнение, содержащее неизвестное под знаком логарифма ).

Рассмотрим простейшее логарифмическое уравнение: logax = b (где а>0, a ≠ 1 ). Так как логарифмическая функция возрастает (или убывает) на множестве положительных чисел и принимает все действительные значения, то по теореме о корне следует, что для любого b данное уравнение имеет, и притом только одно, решение, причем положительное.

Вспомните определение логарифма. ( Логарифм числа х по основанию а – это показатель степени, в которую надо возвести основание а, чтобы получить число х ). Из определения логарифма сразу следует, что аb является таким решением.

Запишите заголовок: Методы

1. По определению логарифма .

Так решаются простейшие уравнения вида .

Рассмотрим № 514(а ): Решить уравнение

Как вы предлагаете его решать? ( По определению логарифма )

Решение . , Отсюда 2х – 4 = 4; х = 4.

В этом задании 2х – 4 > 0, так как > 0, поэтому посторонних корней появиться не может, и проверку нет необходимости делать . Условие 2х – 4 > 0 в этом задании выписывать не надо.

2. Потенцирование (переход от логарифма данного выражения к самому этому выражению).

Рассмотрим пример 2 (стр. 242) :

Какую особенность вы заметили? (Основания одинаковы и логарифмы двух выражений равны) . Что можно сделать? (Потенцировать).

При этом надо учитывать, что любое решение содержится среди всех х, для которых логарифмируемые выражение положительны.

Решение 1 . ОДЗ:

Потенцируем исходное уравнение , получим уравнение 2x + 3 = х + 1. Решаем его: х = -2. Это решение не подходит ОДЗ, значит, данное уравнение корней не имеет.

Можно решить это уравнение иначе – переходом к равносильной системе :

Уравнение

(Система содержит избыточное условие – одно из неравенств можно не рассматривать).

Решение 2. Уравнение равносильно системе:

Эта система решений не имеет.

Есть еще один вариант решения – переход к следствию из данного уравнения. При неравносильных преобразованиях найденное решение необходимо проверить подстановкой в исходное уравнение .

Решение 3 . . Сделаем проверку: неверно, так как не имеет смысла.

Ответ: корней нет .

Вопрос классу : Какое из этих трех решений вам больше всего понравилось? (Обсуждение способов).

Вы имеете право решать любым способом.

3. Введение новой переменной .

Рассмотрим № 520(г) . .

Что вы заметили? ( Это квадратное уравнение относительно log3x) Ваши предложения? (Ввести новую переменную)

Решение . ОДЗ: х > 0.

Пусть , тогда уравнение примет вид:. Дискриминант D > 0. Корни по теореме Виета:.

Вернемся к замене: или .

Решив простейшие логарифмические уравнения, получим:

; .

Ответ : 27;

4. Логарифмирование обеих частей уравнения.

Решить уравнение:.

Решение : ОДЗ: х>0, прологарифмируем обе части уравнения по основанию 10:

. Применим свойство логарифма степени:

(lgx + 3) lgx =

Пусть lgx = y, тогда (у + 3)у = 4

, (D > 0) корни по теореме Виета: у1 = -4 и у2 = 1.

Вернемся к замене, получим: lgx = -4,; lgx = 1, .

Ответ : 0,0001; 10.

5. Приведение к одному основанию.

№ 523(в). Решите уравнение:

Решение: ОДЗ: х>0. Перейдем к основанию 3.

или ;.

6. Функционально-графический метод.

№ 509(г). Решить графически уравнение: = 3 – x.

Как вы предлагаете решать? (Строить по точкам графики двух функций у = log2x и y = 3 – x и искать абсциссу точек пересечения графиков) .

Посмотрите ваше решение на слайде .

Есть способ, позволяющий не строить графики . Он заключается в следующем : если одна из функций у = f(x)возрастает, а другая y = g(x) убывает на промежутке Х, то уравнение f(x)= g(x) имеет не более одного корня на промежутке Х .

Если корень имеется, то его можно угадать.

В нашем случае функция возрастает при х>0, а функция y = 3 – x убывает при всех значениях х, в том числе и при х>0, значит, уравнение имеет не более одного корня. Заметим, что при х = 2 уравнение обращается в верное равенство, так как .

IV. Первичное закрепление

«Правильному применению методов можно научиться,
только применяя их на различных примерах».
Датский историк математики Г. Г. Цейтен

Предложите метод решения уравнений:

1) № 520 (в).

2) № 514 (в) .

3) № 522 (а).

4) № 519 (в) .

5) № 509(в).

6) № 523(а).

V. Домашнее задание

П. 39 рассмотреть пример 3, решить № 514, № 520 (в).

VI. Подведение итогов урока

Какие методы решения логарифмических уравнений мы рассмотрели на уроке?

На следующих уроках рассмотрим более сложные уравнения. Для их решения пригодятся изученные методы.

Демонстрируется последний слайд:

«Что есть больше всего на свете?
Пространство.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого».
Фалес

Желаю всем достичь желаемого. Благодарю за сотрудничество и понимание.


источники:

http://100urokov.ru/predmety/urok-9-uravneniya-logarifmicheskie

http://infourok.ru/konspekt-uroka-po-teme-metody-resheniya-logarifmicheskih-uravnenij-5509724.html