Как решать квадратные уравнения аналитическим способом

Квадратные уравнения (способы решения)

Разделы: Математика

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Квадратные уравнения умели решать около 2000 лет до нашей эры в Вавилоне. Применяя современную алгебраическую запись, можно сказать, что в их книгописных текстах встречаются, кроме неполных, и такие, как полные квадратные уравнения.

Определение

Уравнение вида ax 2 + bx + c = 0, где a, b, c — действительные числа, причем a ≠ 0, называют квадратным уравнением.

Если a = 1 , то квадратное уравнение называют приведенным; если a ≠ 1, то неприведенным .
Числа a, b, c носят следующие названия: a — первый коэффициент, b — второй коэффициент, c — свободный член.

Корни уравнения ax 2 + bx + c = 0 находят по формуле

Выражение D = b 2 — 4ac называют дискриминантом квадратного уравнения.

  • если D 0, то уравнение имеет два действительных корня.

В случае, когда D = 0, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

Формулы

Полное квадратное уравнение

Неполные квадратные уравнения

Если в квадратном уравнении ax 2 + bx + c = 0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным.

Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения — проще решить уравнение методом разложения его левой части на множители.

Способы решения неполных квадратных уравнений:

Решение неполного квадратного уравнения

Квадратные уравнения с комплексными переменными

Сначала рассмотрим простейшее квадратное уравнение z 2 = a, где a-заданное число, а z-неизвестное. На множестве действительных чисел это уравнение:

  1. имеет один корень z = 0, если а = 0;
  2. имеет два действительных корня z1, 2 = ±√a
  3. Не имеет действительных корней, если a 2 + x + 1 = 0.
    Решим уравнение. Для этого построим два графика y = x 2 ; y = x + 1.

y = x 2 , квадратичная функция, график парабола.
y = x + 1, линейная функция, график прямая.

Графики пересекаются в двух точках, уравнение имеет два корня.
Ответ: x ≈ -0,6; x ≈ 2,6.

Решение задач с помощью квадратных уравнений

ПроцессыСкорость км/чВремя ч.Расстояние км.
Вверх по реке10 — x35 / (10 — x)35
Вверх по протоку10 — x + 118 / (10 — x + 1)18
V теченияx
V притокаx + 1

Зная, что скорость в стоячей воде равна 10 км/ч, составим уравнение.

Аналитический способ решения квадратных уравнени с параметром

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Конкурс на лучшую методическую разработку руководящих и

педагогических работников образовательных организаций, подведомственных

Управлению образованием Асбестовского городского округа,

в 2018-2019 учебном году

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №2»

Асбестовского городского округа

Технологическая карта конструкта урока по реализации ФГОС.

Тема работы: Аналитический способ решения квадратных уравнений с параметром.

Форма представления в очном этапе: мастер-класс.

Санникова Ксения Николаевна

I квалификационная категория

Асбестовский городской округ

2018-2019 учебный год

План проведения мероприятия_________________________________________________6-14

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры у школьников, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение или неравенство с параметрами представляет собой целый класс обычных уравнений и неравенств, для каждого из которых должно быть получено решение. Несмотря на то, что программа по математике средней общеобразовательной школы не упоминает в явном виде о задачах с параметрами, было бы ошибкой утверждать, что вопрос о решении задач с параметрами никоим образом не освещается в рамках школьного курса математики. О бучающиеся начинают знакомство с параметром с 7 класса, а именно при изучении линейных уравнений вида ax = b , далее 8 классе при изучении квадратных уравнений ax 2 + bx + c =0 , при решении тригонометрических уравнений в 10 классе и т.д. Также в школьных учебниках по математике в последнее время всё чаще стали появляться уравнения, неравенства и системы, содержащие параметр. К тому же подобные задачи включены в ОГЭ и ЕГЭ, а анализ предыдущих результатов показывает, что школьники с большим трудом решают задания с параметром, а многие даже не приступают к ним, либо приводят громоздкие и не верные вычисления.

Поэтому, считаю, что задачам с параметрами следовало бы уделять больше внимания. Они представляют математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков, требуют от учащихся умственных и волевых усилий, развитого внимания, воспитания таких качеств, как активность, творческая инициатива.

Цель урока (образовательные, развивающие, воспитательные): познакомить учащихся с аналитическим способом решения квадратных уравнений с параметром, вывести алгоритм решения квадратных уравнений с параметром аналитическим способом, развитие умения решать задачи данного типа, воспитание мотивов учения, положительного отношения к знаниям.

Знать алгоритм решения квадратных уравнений с параметром аналитическим способом;

Уметь решать задачи данного типа;

Личностные: находчивость, активность при решении математических задач; способность к эмоциональному восприятию;
УУД, которые актуализируют/приобретут/закрепят обучающиеся в ходе урока/занятия/ мероприятия:

Личностные УУД: мотивация к обучению и целенаправленной познавательной деятельности;

Регулятивные УУД: Целеполагание; планирование;

Коммуникативные УУД: планирование учебного сотрудничества с учителем и сверстниками;

Познавательные УУД: самостоятельное выделение и формулирование познавательной цели.

Возраст участников: 8 класс.

Условия проведения мероприятия: специальных условий не требуется.

Место: учебный кабинет.

Перечень оборудования и медиа-ресурсов: интерактивная доска, проектор, ноутбук.

Оформление: тема урока напечатанная на листе А4.

РАЗЛИЧНЫЕ СПОСОБЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ
статья по алгебре (8 класс) по теме

Работа предназначена для учащихся 8-9 классов, она поможет разобраться с различными способами решения квадратных уравнений.

«В материале рассматриваются способы решения, которые изучаются в школе : с помощью дискриминанта, теорема Виетта, а так же такие методы решения, которые не изучаются в школьной программе.

В работе одно уравнение решено всеми способами, показанными в работе.

Также в работе представлен список рекомендуемой литературы, составлен дидактический материал для самостоятельного изучения всего материала работы.

Скачать:

ВложениеРазмер
30971021654.doc330 КБ

Предварительный просмотр:

Различные способы решения квадратных уравнений.

  1. Введение.
  2. Из истории квадратных уравнений.
  3. Способы решения квадратных уравнений.
  1. Решение квадратных уравнений по формуле.
  2. Разложение левой части уравнения на множители.
  3. Решение квадратных уравнений по теореме Виета.
  4. Метод выделения полного квадрата.
  5. Решение квадратных уравнений способом переброски коэффициентов.
  6. Свойства коэффициентов квадратного уравнения.
  7. Графическое решение.
  8. Решение с помощью линейки и циркуля.
  9. Номограммы в решении квадратных уравнений.
  10. Геометрический способ решения.
  11. Решение квадратных уравнений по теореме Безу.
  1. Решение одного уравнения всеми способами.
  2. Литература.
  3. Приложение.

Прежде чем рассмотреть способы решения квадратных уравнений, вспомним

определение: Квадратным уравнением называется уравнение вида

где х- переменная, а,b и с-некоторые числа, причем, а ≠ 0.

Если в квадратном уравнении ах 2 + bx + c = 0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением.

Расширение и углубление знаний в области решений квадратных уравнений.

  1. Рассмотреть всевозможные способы решений квадратных уравнений.
  2. Научиться применять эти способы решений.
  3. Выявить наиболее удобные способы решений.
  4. Составить дидактический материал для использования разных способов решений квадратных уравнений.

Актуальность этой темы заключается в том, что при сдаче ГИА и ЕГЭ квадратные уравнения необходимо решать не только на алгебре, геометрии, но и на физике. А так как время экзамена ограничено, значит надо уметь быстро найти рациональный способ решения. Работа способствует выработке навыка решения квадратных уравнений и умению быстро находить рациональный способ решения.

Из истории квадратных уравнений.

Развитие земледелия и астрономии ставили перед учеными древности задачи, для решения которых требовалось умение решать квадратные уравнения.

Решение некоторых квадратных уравнений известно было вавилонянам около 2000 лет до н.э.. Затем решение уравнений стало под силу грекам, а за ними индейцам, которые графически научились решать некоторые виды квадратных уравнений. Но общих способов решения пока не вывели.

В III в. н.э. квадратное уравнение х 2 — 20х + 96 = 0 решил древнегреческий математик Диофант без обращения к геометрии, но решение х= -2 для Диофанта не существовало, т.к. отрицательные числа древняя математика не знала.

Способы решений квадратных уравнений.

  1. Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах 2 + bх + с = 0, а ≠ 0,

на 4а и следовательно имеем:

4а 2 х 2 + 4аbх + 4ас = 0.

((2ах) 2 + 2*2ах * b + b 2 ) – b 2 + 4ас = 0,

(2ах + b) 2 = b 2 – 4ас,

2ах + b = ± √ b 2 – 4ас

2ах = – b ± √ b 2 – 4ас

а = 2, b = -5, с = 2, D = b 2 – 4ас =(-5) 2 -4*2*2=25-16=9, D >два разных корня;

х = , х = ; х = , х 1 =2 , х 2 = , х 2 = 1/2

Таким образом, в случае положительного дискриминанта,

т. е. при b2 – 4ас≥0 уравнение ах 2 + bх + с = 0 имеет два различных корня.

а =4, b= — 12, с = 9. D = b 2 – 4ас=144-4*4*9=0, D = 0, один корень;

Итак, если дискриминант равен нулю, т. е. D = b 2 – 4ас= 0, то уравнение ах 2 + bх + с = 0 имеет единственный корень, х =

в) 2х 2 -3х + 2 = 0, а =2, b= -3, с = 2, D = b 2 – 4ас= 9 – 4∙2∙2 =9 – 16 = — 7, D

Уравнение не имеет корней.

  1. Разложение левой части на множители.

х 2 — 2х — 8 = 0. Разложим левую часть на множители:

х 2 — 2х — 8 = х 2 — 4х +2х -8 = х(х -4 ) + 2(х -4) = (х + 2)(х -4).

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = -2, а также при х = 4.

Это означает, что число — 2 и 4 являются корнями уравнения х 2 — 2х — 8 = 0.

  1. Решение квадратных уравнений по теореме Виета.

Знаменитый французский учёный Франсуа Виет(1540-1603)

Сумма корней приведенного квадратного уравнения х 2 + рх + q = 0 равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену, т.е. х 1 + х 2 = — р,

Теорема, обратная теореме Виета. Если р, q, x 1 , x 2 таковы, что х 1 + х2 = — р,

х 1 · х 2 = q, то х 1 и х 2 – корни уравнения х 2 + рх + q = 0

  1. Метод выделения полного квадрата.

Поясним этот метод на примере.

Решим уравнение х 2 + 6х – 40 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в следующем виде: х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3. поэтому чтобы получить полный квадрат, нужно прибавить 9, так как

х 2 + 2· х ·3 + 9 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения х 2 + 6х – 40 = 0,

прибавляя к ней и вычитая 9. Имеем: х 2 + 6х – 40 = х 2 + 2х ·3 + 9 – 9 – 40 = (х + 3) 2 – 49.

Таким образом, данное уравнение можно записать так: (х + 3) 2 –49 = 0, т.е. (х + 3) 2 = 49.

Следовательно, х + 3 = 7, х 1 = 4, или х +3 = -7 , х 2 = -10.

  1. Решение квадратных уравнений способом переброски коэффициентов.

Рассмотрим квадратное уравнение ах 2 + bх + с = 0, а ≠ 0.

Умножая обе его части на а, получаем уравнение а 2 х 2 + а bх + ас = 0.

Пусть ах = у, откуда х =y/a; тогда приходим к уравнению у 2 + by + ас = 0,

равносильного данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получаем х 1 = и х 2 = . При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 -9x+9 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у 2 – 9y +18 = 0.

Согласно теореме Виета

y 1 =6 x 1 =6/2 x 1 =3
y 2 =3 x 2 =3/2 x 2 =1,5

  1. Свойства коэффициентов квадратного уравнения.

ах 2 + bх + с = 0, где а ≠ 0.

1 ) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х 1 = 1, х 2 = с/а.

Решим уравнение 2013х 2 –2014х + 1 = 0.

Решение. Так как а + b + с = 0 (2013 – 2014 + 1 = 0), то х 1 = 1, х 2 = c/a = 1/2013.

2) Если a + c=b , то х 1 =-1, х 2 = -с/а

Решим уравнение 11x 2 +27x+16= 0

х 1 = — 1, х 2 = -16/11

Ответ: х 1 =-1, х 2 =-16/11

Если в уравнении х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = — px — q.

Построим графики зависимости у = х 2 и у = — px — q.

График первой зависимости — парабола, проходящая через начало координат. График второй зависимости — прямая (рис.1). Возможны следующие случаи:

— прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться (одна общая точка), т.е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

  1. Решение с помощью линейки и циркуля.

  1. Номограммы в решении квадратных уравнений.

номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам

  1. Геометрический способ решения.

Решение представлено на рис.8 , где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у – 16 +9 – 9 = 0 – одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = – 8.

у2

  1. Решение квадратных уравнений по теореме Безу.

Разделим р(х) на (х-1)

Ответ: x 1 =1, x 2 =3

Решение одного уравнения всеми способами.

«Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу различными способами, чем решать три-четыре различные задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт». У. У. Сойер.

1)Решение квадратного уравнения по формуле:

D=8 2 -4*1*(-9)=64+36=100>0-действуют 2 корня

2)Разложение левой части на множители:

а)x 2 +8x-9=0 б)x 2 +8x-9=0

x 2 +9x-x-9=0 x 2 +8x-8-1=0

x 2 -x+9x-9=0 x 2 -1+8x-8=0

x-1=0 или x+9=0 x-1=0 или x+9=0

x 1 =1 x 2 =-9 x 1 =1 x 2 =-9

3)Решение по теореме Виета.

x 1 *x 2 =-9

Методом подбора находим:

4)Метод выделения полного квадрата:

x 2 +2*x* 4 + 4 2 -4 2 -9=0 x+4=±5

x 2 +2 x 4+16-25=0 x+4=5 или x+4=-5

(x+4) 2 =25 x 1 =1 x 2 =-9

5)Решение способом переброски коэффициентов.

Квадратное уравнение решается данным способом если a ≠1.

Поэтому х 2 +8х-9=0 данным способом не решается.

6)Свойства коэффициентов квадратного уравнения:

a+b+c=0, тогда х 1 =1 х 2 = -9

7) Графическое решение:

Построим графики данных функций:

у=х 2 — парабола с центром в точки О(0:0)

у=-8х+9- линейная функция, графиков является прямая.


источники:

http://infourok.ru/analiticheskiy-sposob-resheniya-kvadratnih-uravneni-s-parametrom-3697189.html

http://nsportal.ru/shkola/algebra/library/2014/07/27/razlichnye-sposoby-resheniya-kvadratnykh-uravneniy-0