Как решать неполное кубические уравнения

Решение кубических уравнений

Здесь мы рассматриваем решение кубических уравнений вида
(1) .
Далее считаем, что – это действительные числа.

Если исходное уравнение имеет вид:
(2) ,
то разделив его на , получаем уравнение вида (1) с коэффициентами
.

Уравнение (1) имеет три корня: , и . Один из корней всегда действительный. Действительный корень мы обозначаем как . Корни и могут быть либо действительными, либо комплексно сопряженными. Действительные корни могут быть кратными. Например, если , то и – это двукратные корни (или корни кратности 2), а – простой корень.

Если известен один корень

Пусть нам известен один корень кубического уравнения (1). Обозначим известный корень как . Тогда разделив уравнение (1) на , получим квадратное уравнение. Решая квадратное уравнение, найдем еще два корня и .

Для доказательства воспользуемся тем, что кубический многочлен можно представить в виде:
.
Тогда, разделив (1) на , получаем квадратное уравнение.

Примеры деления многочленов представлены на странице
“Деление и умножение многочлена на многочлен уголком и столбиком”.
Решение квадратных уравнений рассмотрено на странице
“Корни квадратного уравнения”.

Если один из корней – целый

Если исходное уравнение имеет вид:
(2) ,
и его коэффициенты , , , – целые числа, то можно попытаться найти целый корень. Если это уравнение имеет целый корень, то он является делителем коэффициента . Метод поиска целых корней заключается в том, что мы находим все делители числа и проверяем, выполняется ли для них уравнение (2). Если уравнение (2) выполняется, то мы нашли его корень. Обозначим его как . Далее делим уравнение (2) на . Получаем квадратное уравнение. Решая его, находим еще два корня.

Поиск рациональных корней

Если в уравнении (2) , , , – целые числа, причем , и целых корней нет, то можно попытаться найти рациональные корни, то есть корни вида , где и – целые.

Для этого умножим уравнение (2) на и сделаем подстановку :
;
(3) .
Далее ищем целые корни уравнения (3) среди делителей свободного члена .

Если мы нашли целый корень уравнения (3), то, возвращаясь к переменной , получаем рациональный корень уравнения (2):
.

Формулы Кардано и Виета для решения кубического уравнения

Если нам не известен ни один корень, и целых корней нет, то найти корни кубического уравнения можно по формулам Кардано.

Рассмотрим кубическое уравнение:
(1) .
Сделаем подстановку:
.
После этого уравнение приводится к неполному или приведенному виду:
(4) ,
где
(5) ; .

Формула Кардано для неполного (приведенного) кубического уравнения имеет вид:
;
;
;
;
.
По формуле Кардано, мы находим три корня величины . Затем, используя формулу , находим значения величины .

После разделения кубических корней величины , формула Кардано принимает следующий вид:
(6) , ,
где
(7) ; ; ;
(8) .

При , для и нужно выбирать действительные корни, которые автоматически связаны соотношением . При этом мы получим одно действительное решение и два комплексно сопряженных и .

При имеем:
; ; .
В этом случае мы имеем два кратных действительных корня. Если , то мы имеем три кратных корня.

При мы имеем три действительных корня. При этом и – комплексные. Поэтому решение приводится к тригонометрической форме, которая имеет название формулы Виета:
(9) ;
(10) ,
где
(11) ; .

Примеры решений по формулам Кардано и Виета

Решить кубические уравнения:
;
.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

Автор: Олег Одинцов . Опубликовано: 30-04-2016 Изменено: 02-10-2016

О решении неполного кубического уравнения

Intro

Я публикую этот топик как обучающий. Собственно говоря, существенной новизны в материале нет, тема заезжена. Думаю, что интересным будет подход к решению задачи.

Помню, на первом курсе на занятиях по математическому анализу пришел в голову один интеграл. Преподаватель вызвал к доске, но прозвенел звонок. По дороге домой в автобусе сложился «скелет» решения кубического уравнения. Общая схема, конечно, не самая рациональная. Есть более эффективная — тригонометрическая формула Виета. Там сразу выписывается корень по виду уравнения, а, вообще, по объему вычислений все-таки лучше использовать численный метод Ньютона, поскольку степенные ряды для обратных тригонометрических функций сходятся медленно (по ним строятся вычисления таких функций в некоторых библиотеках). Вот что получилось.

1. Исходный интеграл и кубическое уравнение

Нужно найти неопределенный интеграл

Применяя метод неопределенных коэффициентов, представим знаменатель подынтегральной функции как

откуда получаем нелинейную систему алгебраических уравнений относительно неизвестных коэффициентов, для решения которой требуется найти положительный корень неполного кубического уравнения

Исследуя функцию в левой части уравнения на монотонность, можно выяснить, что она имеет максимум

Тогда из непрерывности функции следует, что исходное уравнение имеет три действительных корня, причем два отрицательных и один положительный, принадлежащий отрезку , .
Найдем его.

2. Поиск положительного решения

Заметим, что наше уравнение не имеет рациональных корней.
Начнем со следующего тождества, справедливость которого, наверное, многие доказывали в школе:

Преобразуем его к виду

Тогда решение кубического уравнения сводится к решению системы

причем (по условию положительности корня).
От данной системы перейдем к системе

По сути в (1) записана теорема Виета для квадратного уравнения

Дискриминант здесь отрицательный, казалось бы, можно закончить решение, но нам требуется не действительность и , а действительность их суммы. В этом помогут комплексные числа.

Тригонометрическая форма записи корней квадратного уравнения имеет вид

,
где — мнимая единица.

Может возникнуть вопрос: в системе (1) первое уравнение было получено возведением обеих частей в куб, не вызовет ли это появление дополнительных комплексных корней? Нет, поскольку если выразить через в исходной системе, то получится уже рассмотренное квадратное уравнение. При выражении через имеем тоже самое. Это и доказывает справедливость последней совокупности.
Извлечем кубический корень из и по правилу извлечения корней из комплексных чисел. Получим

где

Выберем такую пару и , чтобы их сумма в мнимой части комплексного числа давала 0, а действительная часть была бы отрицательной. При этом будем использовать формулы приведения (если требуется найти остальные корни уравнения, то лучше использовать формулы преобразования суммы тригонометрических функций в произведение), а также учтем, что угол принадлежит первой четверти. Тогда

Откуда искомый корень

Если использовать тригонометрическую формулу Виета, то полученный корень запишется в более простой форме

Возникает вопрос: почему я не использовал формулу Кардано? Ведь в школах нам говорили, что для решения кубических уравнений используют ее. По своей форме она похожа на то, что сейчас проделал — в итоге придется извлекать кубический корень из комплексного числа. Кстати, именно при решении уравнений третьей степени комплексные числа впервые получили свое применение.

Замечу, что для выяснения состава корней кубического уравнения используют понятие дискриминанта (как и в случае квадратного уравнения). Вообще, понятие дискриминанта в алгебре введено для многочленов произвольной степени.

2. Пример физической задачи с кубическим уравнением

В журнале «Квант» мне как-то раз попалась интересная задачка по физике с выходом на решение кубического уравнения. Суть в следующем. Нужно определить, какую максимальную скорость может развить автомобиль массой (вместе с человеком) при известной наибольшей мощности двигателя?
При наибольшей скорости автомобиля его ускорение равно нулю, поскольку производная функции обращается в ноль в точке экстремума. Хотя оно равно нулю и при движении с постоянной скоростью. Тогда можно сказать так: какую максимальную постоянную скорость автомобиль может развить?
На больших скоростях пренебрегать сопротивлением воздуха уже нельзя, при этом сила лобового сопротивления выражается не по закону Стокса, а по квадратичному закону, поскольку скорость движения достаточно велика. Тогда сила тяги двигателя уравновешивается силой сопротивления воздуха и силами трения качения и скольжения, возникающими между шиной колеса автомобиля и дорожным полотном:

где — суммарный коэффициент трения, — ускорение свободного падения, — коэффициент аэродинамического сопротивления, — площадь лобового сечения автомобиля, откуда и получаем неполное кубическое уравнение.

3. Вопросы и ответы

При прочтении топика у читателя могли возникнуть вопросы. Например, такие:

1. Почему автор не рассматривал полного кубического уравнения? Ответ: полное кубическое уравнение сводится к неполному заменой

где — новая переменная, — коэффициент при , — коэффициент при .

2. В начале топика был рассмотрен многочлен четвертой степени. Есть ли методы, позволяющие аналитически разрешать такие уравнения? Ответ: да, существует метод Феррари.

3. По теореме Абеля-Руффини уравнение, выше четвертой степени, не разрешимо в радикалах. А тут получается корень кубического уравнения, содержащий тригонометрические функции, который, скорее всего, нельзя выразить через радикалы, как так? Ответ: в формулировке теоремы имеется в виду общая запись корня, т.е. корни могут извлекаться и из комплексных чисел при подстановке в формулы коэффициентов уравнения.

4. После Эвариста Галуа были ли попытки получения формул корней уравнения произвольной степени? Ответ: не так давно мне попался на глаза русский перевод книги американского математика Дэвида Мамфорда «Лекции о тэта-функциях» (Мир, 1988). Там в качестве добавления приведена работа Хироси Умемура «Решение алгебраических уравнений с помощью тэта-констант», где заменяется функция извлечения корня другой функцией — модулярной функцией Зигеля, выражаемой через тэта-константы. В этой работе также освещена история исследования данного вопроса после Галуа.

5. Как я понимаю, такие формулы не применимы для использования в практических задачах решения уравнений произвольной степени. Есть ли какие-нибудь современные работы с описанием алгоритмов получения приближенных корней? Ответ: советую книгу Г.П. Кутищева «Решение алгебраических уравнений произвольной степени: Теория, методы, алгоритмы» (URSS, 2010).

6. Существуют ли современные модификации численного метода Ньютона, являющегося на сегодняшний день основным для получения приближенных решений уравнений и систем уравнений? Ответ: можно посмотреть статью Janak Raj Sharma, Rangan Kumar Guha и Rajni Sharma «An efficient fourth order weighted-Newton method for systems of nonlinear equations».

7. Имеются ли какие-нибудь частные случаи уравнений высокой степени, для которых удалось получить аналитические формулы корней? Ответ: корень Бринга для поиска действительного решения уравнения пятой степени и формула Лоуренса Глассера для неполных уравнений произвольной степени.

В заключении для начинающих рекомендую книгу С.Л. Табачникова и Д.Б. Фукса «Математический дивертисмент» (МЦНМО, 2010).

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.


источники:

http://habr.com/ru/post/211881/

http://zaochnik.com/spravochnik/matematika/systems/reshenie-kubicheskih-uravnenij/