Как решать однородные алгебраические уравнения

Системы линейных однородных уравнений

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения нетривиального и фундаментального решения СЛАУ. Полученное решение сохраняется в файле Word (см. пример решения).

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Свойства систем линейных однородных уравнений

Теорема. Система в случае m=n имеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Теорема. Любая линейная комбинация решений системы также является решением этой системы.
Определение. Совокупность решений системы линейных однородных уравнений называется фундаментальной системой решений, если эта совокупность состоит из линейно независимых решений и любое решение системы является линейной комбинацией этих решений.

Теорема. Если ранг r матрицы системы меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из ( n-r ) решений.

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Однородные уравнения

Однородные уравнения

Алгебраический многочлен f(x,y) с двумя переменными x и у называется однородным многочленом n -й степени относительно этих переменных , если при любом имеет место тождество

Это означает, что однородный многочлен n-й степени f (х, у) можно представить в виде

где — коэффициенты многочлена, одновременно не обращающиеся в нуль.

Уравнение f(x,y) = 0 называется однородным алгебраическим уравнением n -й степени с двумя неизвестными x,у, если f(x,y) — однородный многочлен n-й степени относительно этих переменных.

Например, уравнение вида является однородным уравнением 2-й степени относительно неизвестных x и у . Действительно, достаточно проверить выполнение условия (1). При одновременной замене , получим

т.е. условие (1) из определения выполняется (n = 2).

Аналогично, уравнение есть однородное уравнение 2-й степени по отношению к неизвестным x,y,z , поскольку при замене получаем

Итак, однородное алгебраическое уравнение — это уравнение, не меняющее своего вида при одновременном умножении всех его неизвестных на одно и то же число, отличное от нуля. Можно распространить понятие однородности на случай неалгебраических уравнений.

Пусть р(х) и q(x) — две произвольные функции, определённые на одном и том же множестве, .

Однородным уравнением n -й степени относительно функций р(х), q(x) называется уравнение вида

В частности, если функции р(х) и q(x) являются целыми алгебраическими многочленами, то и уравнение (2) будет относиться к аналогичному классу. В качестве другого примера рассмотрим уравнение вида

Оно является однородным тригонометрическим уравнением 2-й степени относительно функций

Перейдём к процедуре решения уравнения (2).

Если хотя бы один из коэффициентов или обращается в нуль, то левая часть уравнения легко раскладывается на множители. В результате уравнение оказывается равносильно на ОДЗ совокупности двух уравнений. Например, если , то получим совокупность

Если же и , то для решения однородного уравнения (2) необходимо рассмотреть два возможных случая.

1) Если то, поделив обе части уравнения на и обозначив после этого отношение p(x)/q(x) через t , получим алгебраическое уравнение n -й степени относительно t:

решив которое и сделав обратную подстановку, найдём часть решений однородного уравнения.

2) Если q(х) = 0. то, подставив в уравнение вместо q(x) нуль, получим, что тогда и р(х) должно обращаться в нуль. Таким образом, этот случай сводится к решению системы уравнений

Осталось объединить все найденные решения. Уравнение (2) решено. Обратимся к примерам.

Пример №185.

Решить уравнение

Решение:

Перепишем уравнение: Видно, что это однородное уравнение 2-й степени относительно функций и1) Пусть х + 1 = 0 , но система решений не имеет.

2) Пусть теперь . Поделив на и обозначив , придём к квадратному уравнению . Оно имеет два корня , . Возвращаясь к переменной x , приходим к совокупности двух уравнений

Пример №186.

Решить в целых числах уравнение

Решение:

Заметим, что если у = 0, то x = 0, и, значит, пара (0;0) удовлетворяет уравнению. Пусть , тогда поделим обе части уравнения на :

Обозначим t = x/у, тогда имеем кубическое уравнение Подбором находим корень t = — 1. Делением многочлена получаем: Убеждаемся в том, что данное кубическое уравнение имеет единственный корень t = — 1, что соответствует у = — x . Положим x = р, где р — произвольное целое число, не равное 0. Тогда у = — р , и имеем бесконечно много решений в виде пар чисел (р;- р), , . Объединяя все полученные решения, приходим к ответу.

Ответ: где .

Пример №187.

Для каждого действительного значения параметра а решить уравнение

Решение:

Заметим, что данное уравнение можно рассмотреть как однородное алгебраическое уравнение 4-й степени относительно x и а.

1) Если а = 0 , то х = 0 .

2) Если , то поделим на , и положим :

Первый сомножитель в нуль не обращается, а второй имеет два корня

Ответ: при а = 0 единственное решение x = 0 ;

при два решения

Пример №188.

Найти действительные корни уравнения

Решение:

Данное уравнение в исходном виде не является однородным, но может быть сведено преобразованиями к однородному. Действительно, достаточно привести его к виду

Получили однородное уравнение 2-й степени относительно x + 1 и у — 1.

1) Если , то, поделив на и обозначив , получим нет решений.

2) Если у = 1, то, подставляя в уравнение, находим x = — 1 .

Ответ:

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Эти страницы возможно вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://www.resolventa.ru/spr/algebra/system1.htm

http://lfirmal.com/odnorodnyie-uravneniya-v-matematike/