Как решать систему уравнений методом введения переменной

Методы решения систем уравнений с двумя переменными

п.1. Метод подстановки

Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.

Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.

п.2. Метод сложения

п.3. Метод замены переменных

Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.

п.4. Графический метод

Графический метод подробно рассмотрен в §15 данного справочника.

п.5. Примеры

Пример 1. Решите систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Решаем методом подстановки: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Для нижнего уравнения: \( \mathrm \)
Подставляем в верхнее уравнение: \( \mathrm \)

б) \( \left\< \begin < l >\mathrm & \\ \mathrm <(x^2+y^2)xy=10>& \end\right. \)
Замена переменных: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: \( \left\< \begin < l >\mathrm & \\ \mathrm <(a^2-2b)b=10>& \end\right.\Rightarrow \left\< \begin < l >\mathrm & \\ \mathrm <9b-2b^2=10>& \end\right. \)
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ \mathrm< D=9^2-4\cdot 2\cdot 10=1,\ \ b=\frac<9\pm 1><4>> = \left[\begin < l >\mathrm & \\ \mathrm & \end\right. $$ Возвращаемся к исходным переменным: \( \left[\begin < l >\left\<\begin < l >\mathrm & \\ \mathrm & \end\right.& \\ \left\<\begin < l >\mathrm & \\ \mathrm & \end\right. \end\right. \)

Конспект урока «Решение систем уравнений методом введения новой переменной»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Открытый урок по теме

«Решение систем уравнений второй степени методом замены переменной»

1) Открыть совместно с учащимися новый метод решения систем уравнений (метод введения новых переменных), закрепить навыки решения систем уравнений другими методами (графическим, подстановкой и сложением).

2) Формировать потребность приобретения новых знаний, создать условия для контроля (самоконтроля) усвоения умений и навыков.

3) Развивать математическую речь при комментировании решения.

4) Воспитывать уважение друг к другу, взаимопонимание, уверенность в себе, развивать самостоятельность и творчество.

Оптимально использовать методы обучения, соответствующие возрасту и развитию учащихся, для формирования знаний по изучаемой на уроке теме.

1.Создать условия для развития познавательной деятельности учащихся.

2.Способствовать формированию умений переносить знания в новую ситуацию.

3.Развивать математический кругозор, мышление и речь, внимание и память.

Содействовать воспитанию интереса к математике, формировать у учащихся умение осмысленно, целенаправленно организовывать на уроке свою деятельность, осознавать значимость каждого шага для себя.

Воспитывать ответственность за грамотно сформулированные и лаконичные ответы.

Тип урока : комбинированный.

Оборудование : мультимедийный проектор, карточки с заданиями, доска.

1. Организационный этап.

Учитель приветствует учеников.

Знакомит учеников с оценочным листом.

Ученики выставляют себе оценки за организационный этап.

2. Актуализация знаний.

Проверим домашнее задание.

Решить систему уравнений тремя различными методами (графическим, подстановкой и сложением)

Для каждого метода записать алгоритм его использования в тетрадь.

1 метод -графический

1)

Графиком этой функции является парабола, «ветви» направлены вверх, вершина в точке (0;-4)

2)

Графиком этой функции является прямая.

Точки пересечения (1;-3);(-3;5).

Алгоритм использования графического метода:

1.Построить графики уравнений в одной системе координат.

2. Найти координаты точки пересечения или указать, что таких точек нет.

3. Записать ответ.

Из второго уравнения выражаем у:

.

Подставляем в первое уравнение:

Если , то

Если , то

Алгоритм использования метода подстановки:

1. Выразить из какого-нибудь уравнения системы одну переменную через другую.

2. Подставить в другое уравнение системы вместо этой переменной равное ему выражение.

3. Решить получившееся уравнение с одной переменной.

4. Найти соответствующее значение второй переменной

5. Записать ответ.

3 метод- алгебраическое сложение

Сложим уравнения системы, получим:

Если , то

Если , то

Алгоритм использования метода алгебраического сложения:

1. Уравнять модули коэффициентов при какой-нибудь переменной.

2. Сложить или вычесть почленно левые и правые части уравнений системы.

3. Решить получившееся уравнение с одной переменной.

4. Найти соответствующее значение второй переменной

5. Записать ответ.

Какой из способов решения системы вам понравился больше?

Ученики ставят себе баллы в оценочный лист.

3. Постановка цели и задач урока. Мотивация учебной деятельности учащихся.

Решим систему уравнений:

Какие основные методы решения систем уравнений вы знаете? (графический, подстановкой и сложением)

Какой из этих методов можно было бы применить к этой системе?

Обсуждаем применение графического способа.

Обсуждаем применение способа сложения.

Обсуждаем применение способа подстановки.

Приходим к выводу, что ни один из ранее изученных методов не подходит. Как тогда поступить? Как решать такие системы? Нужен другой метод.

Какую цель мы можем поставить перед собой на сегодняшнем уроке? (изучить другие методы решения систем уравнений второй степени научиться их применять на практике)

4. Первичное усвоение новых знаний .

Итак, решим систему:

Где мы можем узнать, как решаются такие системы? (в учебнике, в интернете).

Далее реализуется способ достижения информации.

Учитель предлагает ученикам выбрать для себя источник информации и воспользоваться им.

Учащихся предлагают ввести новую переменную.

Введём новую переменную .

Тогда первое уравнение системы можно переписать в виде

Умножим обе части уравнения на ( так как по условию ).

;; .

Делаем обратную замену.

Если , то .

Подставляя во второе уравнение системы, получаем: .

это уравнение корней не имеет.

Если , то .

Подставляя во второе уравнение системы, получаем: .

Если , то .

Если , то .

Решим ещё одну систему:

Учащиеся делают вывод, что для решения этой системы одной переменной недостаточно, надо вводить две переменные, например:

.

Если .

Если .

Давайте уточним цель нашего урока (научиться решать системы уравнений второй степени с помощью метода введения новых переменных).

5. Первичная проверка понимания .

Составление алгоритма использования метода введения новых переменных.

Учащиеся разбиваются на пары и вместе со своими соседями по парте составляют алгоритм использования метода введения новых переменных.

Различные варианты ответов зачитываются с места.

Алгоритм использования метода введения новых переменных:

1. Ввести одну или две новые переменные.

2. Записать новое уравнение или систему уравнений.

3. Решить новое уравнение или систему уравнений и найти значения введённых переменных.

4. Сделать обратную замену и найти значения переменных из условия.

5. Записать ответ.

Ученики ставят себе баллы в оценочный лист.

6. Первичное закрепление

Чтобы помочь затрудняющимся ученикам, даётся подсказка:

Сделаем замену переменной:

Получим новую систему:

3. Если , то . Если , то .

4. Получаем две системы:

или

Потом на экране выводится правильное решение.

Сделаем замену переменной . Получим новую систему:

.

Если , то .

Если , то .

Получаем две системы:

или

корней нет

Если , то .

Если , то .

Ученики ставят себе баллы в оценочный лист.

7. Информация о домашнем задании, инструктаж по его выполнению

Найти в Интернете три системы уравнений, которые можно решить методом введения новой переменной.

Записать в тетрадь их условие и решение.

Самые интересные системы будут разобраны на следующем уроке у доски.

8. Рефлексия (подведение итогов занятия)

Давайте заполним оценочные листы и посмотрим, какие у вас получились оценки.

Чему мы научились на сегодняшнем уроке?

(Решать системы уравнений способом замены переменной)

Что необходимо сделать, для того чтобы решить систему уравнений таким способом?

(сделать замену переменной, решить новое уравнение, выполнить обратную замену)

Что было наиболее сложным (трудным)?

Какие вопросы остались после проведения занятия?

Как решать систему уравнений

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:


источники:

http://infourok.ru/konspekt-uroka-reshenie-sistem-uravneniy-metodom-vvedeniya-novoy-peremennoy-1633567.html

http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij