Как решать сложные рациональные уравнения

Рациональные уравнения. Семь типов рациональных уравнений, сводящихся к квадратным

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений, которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой — число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

  • 2 .

    Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

    1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

    2. Перемножаем каждую пару скобок.

    3. Из каждого множителя выносим за скобку х.

    4. Делим обе части уравнения на .

    5. Вводим замену переменной.

    В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

    Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

    Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

    Теперь можем ввести замену переменной:

    Получим уравнение:

    Ответ:

  • 3 .

    Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

    Разделим числитель и знаменатель каждой дроби на х:

    Теперь можем ввести замену переменной:

    Получим уравнение относительно переменной t:

    Ответ:

  • 4 .

    Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

    Чтобы его решить,

    1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

    2. Сгруппируем слагаемые таким образом:

    3. В каждой группе вынесем за скобку общий множитель:

    4. Введем замену:

    5. Выразим через t выражение :

    Отсюда

    Получим уравнение относительно t:

    Ответ:

  • 5. Однородные уравнения.

    Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

    Однородные уравнения имеют такую структуру:

    В этом равенстве А, В и С — числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень ( в данном случае степень одночленов равна 2), и свободный член отсутствует.

    Чтобы решить однородное уравнение, разделим обе части на

    Или на

    Или на

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Пойдем первым путем. Получим уравнение:

    Сократим дроби, получим:

    Теперь мы вводим замену переменной:

    И решаем квадратное уравнение относительно замены:

    .

    При решении уравнения я обычно придерживаюсь такой тактики: нужно уменьшить количество различных выражений, в состав которых входит неизвестное ( принцип «бритвы Оккама» — не нужно множить сущности без нужды), а для этого помогает разложить выражения с неизвестным на множители. Разложим выражение, стоящее в правой части уравнения на множители.

    Перенесем все влево, получим:

    Теперь мы видим, что перед нами однородное уравнение. Разделим обе части уравнения на , предварительно проверив, что х=1 не является корнем исходного уравнения.

    Теперь самое время ввести замену переменной:

    Получим квадратное уравнение:

    Ответ:

    6 .

    Это уравнение имеет такую структуру:

    Решается с помощью введения вот такой замены переменной:

    В нашем уравнении ,тогда . Введем замену:

    Теперь возведем каждую скобку в четвертую степень, используя треугольник Паскаля:

    Упростим выражение и получим биквадратное уравнение относительно t:

    Ответ: или

  • 7 .

    Это уравнение имеет такую структуру:

    Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

    Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

    Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

    Теперь прикинем, что нам удобнее иметь — квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

    Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

    [/pmath]

    Введем замену:

    Получим квадратное уравнение:

    Ответ:


  • Рациональные уравнения с примерами решения

    Содержание:

    Рациональные уравнения. Равносильные уравнения

    два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

    Так, например, равносильными будут уравнения

    Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

    Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

    1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

    3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

    Левая и правая части каждого из них являются рациональными выражениями.

    Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

    В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

    Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

    Применение условия равенства дроби нулю

    Напомним, что когда

    Пример №202

    Решите уравнение

    Решение:

    С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:

    Окончательно получим уравнение:

    Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.

    Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.

    Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

    Значит, решая дробное рациональное уравнение, можно:

    1) с помощью тождественных преобразований привести уравнение к виду

    2) приравнять числитель к нулю и решить полученное целое уравнение;

    3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.

    Использование основного свойства пропорции

    Если то где

    Пример №203

    Решите уравнение

    Решение:

    Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.

    Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:

    По основному свойству пропорции имеем:

    Решим это уравнение:

    откуда

    Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

    Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

    Таким образом, для решения дробного рационального уравнения можно:

    1) найти область допустимых значений (ОДЗ) переменной в уравнении;

    2) привести уравнение к виду

    3) записать целое уравнение и решить его;

    4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

    Метод умножения обеих частей уравнения на общий знаменатель дробей

    Пример №204

    Решите уравнение

    Решение:

    Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

    Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение

    Умножим обе части уравнения на это выражение:

    Получим: а после упрощения: то есть откуда или

    Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

    Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

    Решая дробное рациональное уравнение, можно:

    3) умножить обе части уравнения на этот общий знаменатель;

    4) решить полученное целое уравнение;

    5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

    Пример №205

    Являются ли равносильными уравнения

    Решение:

    Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

    Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

    Степень с целым показателем

    Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

    где — натуральное число,

    В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи

    Рассмотрим степени числа 3 с показателями — это соответственно

    В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:

    Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что

    Нулевая степень отличного от нуля числа а равна единице, то есть при

    Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.

    Приходим к следующему определению степени с целым отрицательным показателем:

    если натуральное число, то

    Дробно-рациональные уравнения

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 — 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 — 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    Начать следует с области допустимых значений:

    x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 — 4 = ( x — 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) — 7 ( x — 2 ) = 8

    x 2 + 2 x — 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 — 4 · 10 = 9

    x 1 ≠ — 7 + 3 2 = — 2

    x 2 ≠ — 7 — 3 2 = — 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

    — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

    2 x 2 + 9 x — 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x — 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x — 2 — 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

    4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

    x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x — 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    — x 2 — x + 30 = 0 _ _ _ · ( — 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 — 2 x — x x — 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0

    x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

    x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

    — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

    Корни квадратного уравнения:

    x 1 = — 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 — x — 6 x — 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0

    x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

    x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

    0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x — 2 — 3 x + 2 = 20 x 2 — 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

    5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

    2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

    ( x — 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

    Начнем с определения ОДЗ:

    — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

    ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

    ( x — 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = — 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.


    источники:

    http://www.evkova.org/ratsionalnyie-uravneniya

    http://wika.tutoronline.ru/algebra/class/9/drobnoraczionalnye-uravneniya