Как решать тригонометрические уравнения промежутками

Решение тригонометрических уравнений на промежутке

Разделы: Математика

Цель урока:

а) закрепить умения решать простейшие тригонометрические уравнения;

б) научить выбирать корни тригонометрических уравнений из заданного промежутка

Ход урока.

1. Актуализация знаний.

а)Проверка домашнего задания: классу дано опережающее домашнее задание – решить уравнение и найти способ выбора корней из данного промежутка.

1)cos x = -0,5, где хI [- ]. Ответ: .

2) sin x = , где хI [0;2?]. Ответ: ; .

3)cos 2x = —, где хI [0;]. Ответ:

Ученики записывают решение на доске кто-то с помощью графика, кто-то методом подбора.

В это время класс работает устно.

Найдите значение выражения:

а) tg – sin + cos + sin . Ответ: 1.

б) 2arccos 0 + 3 arccos 1. Ответ: ?

в) arcsin + arcsin . Ответ: .

г) 5 arctg (-) – arccos (-). Ответ:– .

– Проверим домашнее задание, откройте свои тетради с домашними работами.

Некоторые из вас нашли решение методом подбора, а некоторые с помощью графика.

2. Вывод о способах решения данных заданий и постановка проблемы, т. е. сообщение темы и цели урока.

– а) С помощью подбора решать сложно, если задан большой промежуток.

– б) Графический способ не даёт точных результатов, требует проверку, и занимает много времени.

– Поэтому должен быть ещё как минимум один способ, наиболее универсальный -попробуем его найти. Итак, чем мы будем заниматься сегодня на уроке? (Учиться выбирать корни тригонометрического уравнения на заданном промежутке.)

– Пример 1. (Ученик выходит к доске)

cos x = -0,5, где хI [- ].

Вопрос: Отчего зависит ответ на данное задание? (От общего решения уравнения. Запишем решение в общем виде). Решение записывается на доске

х = + 2?k, где k R.

– Запишем это решение в виде совокупности:

– Как вы считаете, при какой записи решения удобно выбирать корни на промежутке? (из второй записи). Но это ведь опять способ подбора. Что нам необходимо знать, чтобы получить верный ответ? (Надо знать значения k).

(Составим математическую модель для нахождения k).

1 уровень: № 295 (а,б), № 317 (а,б)

2 уровень: № 307 (в), № 308 (б), № 326(б), № 327(б).

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Основные методы решения тригонометрических уравнений

п.1. Разложение на множители

Алгоритм простого разложения на множители

Шаг 1. Представить уравнение в виде произведения \(f_1(x)\cdot f_2(x)\cdot . \cdot f_n(x)=0\) где \(f_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить совокупность уравнений: \( \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right. \)
Шаг 3. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2cosx cos2x=cosx\) \begin 2cosx cos2x-cosx=0\\ cosx(2cos2x-1)=0\\ \left[ \begin cosx=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \end

Мы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые \(60^<\circ>=\frac\pi3\)
Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

Возможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара \(\frac\pi2+\pi k,\ \ \pm\frac\pi6+\pi k\), равнозначная c \(\frac\pi6+\frac<\pi k><3>\).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.

Алгоритм разложения на множители со знаменателем

Шаг 1. Представить уравнение в виде произведения $$ \frac=0 $$ где \(f_i(x),\ g_i(x)\) — некоторые функции (тригонометрические и не только) от \(x\).
Шаг 2. Решить смешанную систему уравнений: \( \begin \left[ \begin f_1(x)=0\\ f_2(x)=0\\ . \\ f_n(x)=0\\ \end \right.\\ g_1(x)\ne 0\\ g_2(x)\ne 0\\ . \\ g_m(x)\ne 0\\ \end \)
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.

Например:
Решим уравнение \(ctgx-tgx=\frac<\frac12 sin2x>\)
Левая часть уравнения: $$ ctgx-tgx=\frac-\frac=\frac=\frac<(cosx-sinx)(cosx+sinx)> <\frac12sin2x>$$ Подставляем, переносим правую часть влево: $$ \frac<(cosx-sinx)(cosx+sinx)><\frac12sin2x>-\frac<\frac12sin2x>=0 $$ Выносим общий множитель, умножаем на \(1/2\) слева и справа, получаем: $$ \frac<(cosx-sinx)(cosx+sinx-1)>=0 $$ В этом уравнении учтено ОДЗ для \(ctgx\) и \(tgx\). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: \begin \begin \left[ \begin cosx-sinx=0\\ cosx+sinx=1 \end \right.\\ sin2x\ne 0 \end \end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): \begin cosx-sinx=0\ \ |: cosx\\ 1-tgx=0\Rightarrow tgx=1\Rightarrow x=\frac\pi4+\pi k \end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): \begin cosx-sinx=1\ \ | \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>cosx+\frac<\sqrt<2>><2>sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4\right)cosx+sin\left(\frac\pi4\right)sinx=\frac<\sqrt<2>><2>\\ cos\left(\frac\pi4-x\right)=cos\left(x-\frac\pi4\right)=cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>> <2>\Rightarrow x-\frac\pi4=\pm\frac\pi4+2\pi k\Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Решаем исключающее уравнение для знаменателя: $$ sin2x\ne 0\Rightarrow 2x\ne \pi k\Rightarrow x\ne\frac<\pi k> <2>$$

Записываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: \begin \begin \left[ \begin x=\frac\pi4+\pi k\\ x=2\pi k\\ x=\frac\pi2+2\pi k\Leftrightarrow x=\frac\pi4+\pi k \end \right.\\ x\ne\frac<\pi k> <2>\end \end

За счет требования \(x\ne\frac<\pi k><2>\) исключаются семейства \(x=\frac\pi2+2pi k\) и \(x=2\pi k\).
Остается только \(x=\frac\pi4+\pi k\).
Ответ: \(\frac\pi4+\pi k\)

п.2. Приведение к квадратному уравнению

Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где \(f(x)\) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: \(t=f(x)\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Если \(f(x)\) — синус или косинус, проверить условие \(-1\leq t_<1,2>\leq 1\). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений \( \left[ \begin f(x)=t_1\\ f(x)=t_2 \end \right. \) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(3sin^2x+10cosx-6=0\)
Заменим \(sin^2x=1-cos^2x\). Получаем: \begin 3(1-cos^2x)+10cosx-6=0\\ -3cos^2x+10cosx-3=0\\ 3cos^2x-10cosx+3=0\\ \text<Замена:>\ t=cosx,\ \ -1\leq t\leq 1\\ 3t^2-10t+3=0\\ D=(-10)^2-4\cdot 3\cdot 3=64\\ t=\frac<10\pm 8><6>= \left[ \begin \frac13\\ 3\gt 1 — \text <не подходит>\end \right. \end Решаем \(cosx=\frac13\Rightarrow x=\pm arccos\frac13+2\pi k\)
Ответ: \(\pm arccos\frac13+2\pi k\)

п.3. Приведению к однородному уравнению

Алгоритм решения однородного тригонометрического уравнения 1-й степени

Например:
Решим уравнение \(sinx+cosx=0\)
Делим на \(cosx\). Получаем: \(tgx+1=0\Rightarrow tgx=-1\Rightarrow x=-\frac\pi4+\pi k\)
Ответ: \(-\frac\pi4+\pi k\)

Алгоритм решения однородного тригонометрического уравнения 2-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^2x\) \begin \frac=\frac<0>\\ Atg^2x+Btgx+C=0 \end Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное квадратное уравнение: \begin at^2+bt+c=0\\ D=b^2-4ac,\ \ t_<1,2>=\frac<-b\pm\sqrt> <2a>\end Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2 \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(6sin^2x-sinxcosx-cos^2x=3\)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): \begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\\ 3sin^2x-sinxcosx-4cos^2x=0\ |:\ cos^2x\\ 3tg^2x-tgx-4=0\\ \text<Зaмена:>\ t=tgx\\ 3t^2-t-4=0\\ D=(-1)^2-4\cdot 3\cdot(-4)=49\\ t=\frac<1\pm 7><6>= \left[ \begin -1\\ \frac43 \end \right. \end Решаем совокупность: \( \left[ \begin tgx=-1\\ tgx=\frac43 \end \right. \Rightarrow \left[ \begin x=-\frac\pi4+\pi k\\ x=arctg\frac43+\pi k \end \right. \)
Ответ: \(-\frac\pi4+\pi k,\ \ arctg\frac43+\pi k\)

Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:

Алгоритм решения однородного тригонометрического уравнения n-й степени

Шаг 1. Разделить левую и правую части уравнения на \(cos^n x\)
Шаг 2. Сделать замену переменных: \(t=tgx\). Решить полученное алгебраическое уравнение: \begin a_0t^n+a_1t^+. +a_n=0 \end Найти корни \(t_1, t_2. t_k,\ k\leq n\)
Шаг 3. Решить совокупность простейших тригонометрических уравнений \( \left[ \begin tgx=t_1\\ tgx=t_2\\ . \\ tgx=t_k \end \right. \)
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение \(2sin^3x=cosx\)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: \begin 2sin^3x=cosx(sin^2x+cos^2x)\\ 2sin^3x-sin^2xcosx-cos^3x=0\ |:\ cos^3x\\ 2tg^x-tg^2x-1=0\\ \end Замена \(t=tgx\) дает кубическое уравнение: \(2t^3-t^2-1=0\)
Раскладываем на множители: \begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\\ =(t-1)(2t^2+t+1) \end Вторая скобка на множители не раскладывается, т.к. \(D=1-4\cdot 2=-7 \lt 0\).
Получаем: \(2t^3-t^2-1=0\Leftrightarrow t-1=0\)
Возвращаемся к исходной переменной:
\(tgx=1\Rightarrow x=\frac\pi4+\pi k\)
Ответ: \(\frac\pi4+\pi k\)

п.4. Введение вспомогательного угла

Например:
Решим уравнение \(\sqrt<3>sin3x-cos3x=1\)
Делим уравнение на \( p=\sqrt<3+1>=2: \) \begin \sqrt<3>sin3x-cos3x=1 |:\ 2\\ \frac<\sqrt<3>><2>sin3x-\frac12cos3x=\frac12\\ sin\left(\frac\pi3\right)sin3x-cos\left(\frac\pi3\right)cos3x=\frac12\\ cos\left(\frac\pi3\right)cos3x-sin\left(\frac\pi3\right)sin3x=-\frac12\\ cos\left(3x+\frac\pi3\right)=-\frac12\Rightarrow 3x+\frac\pi3=\pm\frac<2\pi><3>+2\pi k\Rightarrow 3x= \left[ \begin -\pi+2\pi k\\ \frac\pi3+2\pi k \end \right. \Rightarrow x= \left[ \begin -\frac\pi3+\frac<2\pi k><3>\\ \frac\pi9+\frac<2\pi k> <3>\end \right. \end
Ответ: \(-\frac\pi3+\frac<2\pi k><3>,\ \ \frac\pi9+\frac<2\pi k><3>\)

п.5. Преобразование суммы тригонометрических функций в произведение

При решении уравнений вида \begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 \end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).

Например:
Решим уравнение \(cos3x+sin2x-sin4x=0\)
Заметим, что: $$ sin2x-sin4x=2sin\frac<2x-4x><2>cos\frac<2x+4x>=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: \begin cos3x-2sinxcos3x=0\\ cos3x(1-2sinx)=0\\ \left[ \begin cos3x=0\\ 1-2sinx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ sinx=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=(-1)^k\frac\pi6+\pi k= \left[ \begin x=\frac\pi6+2\pi k\\ \frac<5\pi><6>+2\pi k \end \right. \end \right. \end Чтобы было понятней, распишем полученные множества в градусах: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k\\ x=\frac\pi6+2\pi k=30^<\circ>+360^<\circ>k\Leftrightarrow x=30^<\circ>+60^<\circ>k=\frac\pi6+\frac<\pi k><3>\\ x=\frac<5\pi><6>+2\pi k=150^<\circ>+360^<\circ>k \end \right. \end

Получаем, что семейства решений \(\frac\pi6+2\pi k\) и \(\frac<5\pi><6>+2\pi k\) уже содержатся во множестве \(\frac\pi6+\frac<\pi k><3>\).

п.6. Преобразование произведения тригонометрических функций в сумму

При решении уравнений вида \begin sinax\cdot cosbx=sincx\cdot cosdx,\ \ sinax\cdot sinbx=sincx\cdot cosdx\ \ \text <и т.п.>\end используются формулы, выведенные в §18 данного справочника.

Например:
Решим уравнение \(sin5xcos3x=sin6xcos2x\)
Заметим, что: \begin sin5xcos3x=\frac<2>=\frac<2>\\ sin6xcos2x=\frac<2>=\frac <2>\end Подставляем: \begin \frac<2>=\frac<2>\ |\times 2\\ sin8x-sin2x=sin8x-sin4x\\ sin4x-sin2x=0\\ 2sin2xcos2x-sin2x=0\\ sin2x(2cos2x-1)=0\\ \left[ \begin sin2x=0\\ 2cos2x-1=0 \end \right. \Rightarrow \left[ \begin 2x=\pi k\\ cos2x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ 2x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \end

Семейства решений не пересекаются.

Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: \( \left[ \begin x=\frac<\pi k><2>\\ x=\pm\frac\pi6+\pi k \end \right. \Leftrightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pi k \end \right. \)

п.7. Понижение степени

При решении уравнений вида \begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A \end используются формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>,\ \ cos^2x=\frac<1+cos2x> <2>\end (см. формулы половинного аргумента, §15 данного справочника).

Например:
Решим уравнение \(sin^2x+sin^22x=1\)
Расписываем квадраты синусов через формулу понижения степени: \begin \frac<1-cos2x><2>+\frac<1-cos4x><2>=1\\ cos2x+cos4x=0\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=0\\ cos3xcosx=0\\ \left[ \begin cos3x=0\\ cosx=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ x=\frac\pi2+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \end

\(x=\frac\pi2+\pi k\) является подмножеством \(x=\frac\pi6+\frac<\pi k><3>\)
Поэтому \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\frac\pi2+\pi k \end \right. \Leftrightarrow x=\frac\pi6+\frac<\pi k> <3>\end

п.8. Замена переменных

При решении уравнений вида \(f(sinx\pm cosx,\ sinxcosx)=0\) используется замена \begin t=cosx\pm sinx \end

Например:
Решим уравнение \(sinx+cosx=1+sinxcosx\)
Замена: \(t=sinx+cosx\)
Тогда \(t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosx\Rightarrow sinxcosx=\frac<2>\)
Подставляем: \begin t=1+\frac<2>\Rightarrow 2(t-1)=t^2-1\Rightarrow t^2-2t+1=0\Rightarrow (t-1)^2=0\Rightarrow t=1\\ sinx+cosx=1\ |\ \times \frac<\sqrt<2>><2>\\ \frac<\sqrt<2>><2>sinx+\frac<\sqrt<2>><2>cosx=\frac<\sqrt<2>><2>\\ sin\frac\pi4 sinx+cos\frac\pi4 cosx=\frac<\sqrt<2>><2>\\ cos\left(x-\frac\pi4\right)=\frac<\sqrt<2>><2>\Rightarrow x-\frac\pi4=\pm\frac\pi4 + 2\pi k\Rightarrow \Rightarrow \left[ \begin x=2\pi k\\ x=\frac\pi2+2\pi k \end \right. \end Ответ: \(2\pi k,\ \ \frac\pi2+2\pi k\)

п.9. Использование ограничений области значений функций

Уравнения вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: \( \begin sinax=1\\ sinbx=1\\ . \\ cosdx=1\\ . \end \)
Находим пересечение (!) полученных семейств решений и записываем ответ.

Аналогично, уравнение вида \begin \underbrace_> \end может иметь решение только, если каждое из слагаемых равно -1.

Например:
Решим уравнение \(sinx+cos4x=2\)
Для этого нужно решить систему: \begin \begin sinx=1\\ cos4x=1 \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ 4x=2\pi k \end \Rightarrow \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \end

Пересечением двух семейств решений будет только \(\frac\pi2+2\pi k\).
Поэтому \begin \begin x=\frac\pi2+2\pi k\\ x=\frac<\pi k> <2>\end \Leftrightarrow x=\frac\pi2+2\pi k \end

п.10. Примеры

Пример 1. Используя различные методы, решите уравнения:
a) \(4sin\left(\frac\pi2\right)+5sin^2x=4\)
Приводим уравнение к квадратному:
\(5sin^x+4cosx-4=0\)
\(5(1-cos^2x)+4cosx-4=0\)
\(-5cos^2x+4cosx+1=0\)
\(5cos^2x-4cosx-1=0\)
Замена: \(t=cosx,\ \ -1\leq t\leq 1\) \begin 5t^2-4t-1=0\Rightarrow (5t+1)(t-1)=0\Rightarrow \left[ \begin t_1=-\frac15\\ t_2=1 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin cosx=-\frac15\\ cosx=1 \end \right. \Rightarrow \left[ \begin x=\pm arccos\left(-\frac15\right)+2\pi k\\ x=2\pi k \end \right. \end Ответ: \(\pm arccos\left(-\frac15\right)+2\pi k,\ \ 2\pi k\)

б) \(6sinxcosx=5cos2x\)
\(6sinxcosx=3\cdot 2sinxcosx=3sin2x\)
Приводим уравнение к однородному 1-й степени:
\(3sin2x=5cos2x\ |\ :\ cos2x\)
\(3tg2x=5\Rightarrow tg2x=\frac53\Rightarrow 2x=arctg\frac53+\pi k\Rightarrow x=\frac12 arctg\frac53+\frac<\pi k><2>\)
Ответ: \(\frac12 arctg\frac53+\frac<\pi k><2>\)

в) \(9cos^2x-5sin2x=-sin^2x\)
\(5sin2x=5\cdot 2sinxcosx=10sinxcosx\)
Приводим уравнение к однородному 2-й степени:
\(sin^2x-10sinxcosx+9cos^2x=0\ |:\ cos^2x\)
\(tg^2x-10tgx+9=0\)
Замена: \(t=tgx\) \begin t^2-10+9=0\Rightarrow (t-1)(t-9)=0\Rightarrow \left[ \begin t_1=1\\ t_2=9 \end \right. \end Оба корня подходят. Возвращаемся к исходной переменной: \begin \left[ \begin tgx=1\\ tgx=9 \end \right. \Rightarrow \left[ \begin x=\frac\pi4+\pi k\\ x=arctg9+\pi k \end \right. \end Ответ: \(\frac\pi4+\pi k,\ \ arctg9+\pi k\)

г) \(cos3x-1=cos6x\)
Косинус двойного угла: \(cos6x=2cos^2 3x-1\)
Подставляем и раскладываем на множители:
\(cos3x-1=2cos^2 3x-1\)
\(cos3x-2cos^2 3x=0\)
\(cos3x(1-2cos3x)=0\) \begin \left[ \begin cos3x=0\\ 1-2cos3x=0 \end \right. \Rightarrow \left[ \begin 3x=\frac\pi2+\pi k\\ cos3x=\frac12 \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ 3x=\pm\frac\pi3+2\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi6+\frac<\pi k><3>\\ x=\pm\frac\pi9+\frac<2\pi k> <3>\end \right. \end Чтобы проверить пересечения, распишем семейства решений через градусы: \begin \left[ \begin x=\frac\pi6+\frac<\pi k><3>=30^<\circ>+60^<\circ>k=<. -90^<\circ>,-30^<\circ>,30^<\circ>,90^<\circ>,150^<\circ>. >\\ x=\pm\frac\pi9+\frac<2\pi k><3>= \left[ \begin -20^<\circ>+120^<\circ>k=<. -140^<\circ>,-20^<\circ>,100^<\circ>. >\\ 20^<\circ>+120^<\circ>k=<. -100^<\circ>,20^<\circ>,140^<\circ>. > \end \right. \end \right. \end Семейства не пересекаются.
Ответ: \(\frac\pi6+\frac<\pi k><3>,\ \ \pm\frac\pi9+\frac<2\pi k><3>\)

д) \(\sqrt<3>sin2x-cos2x=-\sqrt<3>\)
Разделим на \(p=\sqrt<3+1>\) и введем дополнительный угол:
\(\frac<\sqrt<3>><2>sin2x-\frac12 cos2x=-\frac<\sqrt<3>><2>\)
\(\frac12cos2x-\frac<\sqrt<3>><2>sin2x=\frac<\sqrt<3>><2>\)
\(cos\left(2x-\frac\pi3\right)=\frac<\sqrt<3>><2>\)
\(2x-\frac\pi3=\pm\frac\pi6+2\pi k\)
\(2x=\frac\pi3\pm\frac\pi6+2\pi k= \left[ \begin -\frac<\pi><6>+2\pi k\\ \frac\pi2+2\pi k \end \right. \)
\( \left[ \begin x=-\frac<\pi><12>+\pi k\\ x=\frac\pi4+\pi k \end \right. \) Семейства решений не пересекаются.
Ответ: \(-\frac<\pi><12>+\pi k,\ \ \frac\pi4+\pi k\)

е) \(cos^2x+cos^2 2x=cos^2 3x+cos^2 4x\)
Формула понижения степени: \(cos^2x=\frac<1+cos2x><2>\)
Подставляем: \begin \frac<1+cos2x><2>+\frac<1+cos4x><2>=\frac<1+cos6x><2>+\frac<1+cos8x><2>\\ cos2x+cos4x=cos6x+cos8x\\ 2cos\frac<2x+4x><2>cos\frac<2x-4x><2>=2cos\frac<6x+8x><2>cos\frac<6x-8x><2>\ |:\ 2\\ cos3xcosx=cos7xcosx=0\\ cos3xcosx-cos7xcosx=0\\ cosx(cos3x-cos7x)=0\\ cosx\left(-2sin\frac<3x+7x><2>sin\frac<3x-7x><2>\right)=0\\ -2cosxsin5xsin(-2x)=0\\ 2cosxsin5xsin2x=0\\ cosxsin5xsin2x=0\\ \left[ \begin cosx=0\\ sin5x=0\\ sin2x=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ 5x=\pi k\\ 2x=\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Семейство решений \(x=\frac\pi2+\pi k\) (базовые точки 90°, 270° на числовой окружности) является подмножеством для \(x=\frac<\pi k><2>\) (базовые точки 0°, 90°, 180°, 270°). Поэтому: \begin \left[ \begin x=\frac\pi2+\pi k\\ x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \Rightarrow \left[ \begin x=\frac<\pi k><5>\\ x=\frac<\pi k> <2>\end \right. \end Ответ: \(\frac<\pi k><5>,\ \ \frac<\pi k><2>\)

Пример 2*. Решите уравнения:
a) \begin \frac<4>-\frac<18>+\frac=0 \end ОДЗ: \(tgx\ne \pm 3\)
1) Если \(cosx\ne 0\), то последнее слагаемое \(\frac=\frac<\frac><\frac>=\frac\)
Получаем: \begin \frac<4>-\frac<18>+\frac=0\\ \frac<4(tgx-3)-18+tgx(tgx+3)><(tgx+3)(tgx-3)>=0\\ \frac<(tgx+3)(tgx-3)>=0\\ \end Замена: \(t=tgx\) \begin \frac<(t+3)(t-3)>\Rightarrow \begin t^2+7t-30=0\\ t\ne\pm3 \end \Rightarrow \begin (t+10)(t-3)=0\\ t\ne\pm3 \end \Rightarrow \begin \left[ \begin t=-10\\ t=3 \end \right.\\ t\ne\pm3 \end \Rightarrow\\ t=-10 \end Получаем: \begin tgx=-10\\ x=arctg(-10)+\pi k=-arctg10+\pi k \end
2) Проверим, является ли \(cosx=0\) решением.
При \(cosx=0,\ x=\frac\pi2+\pi k,\ tgx\rightarrow\infty\). Первое слагаемое \(\frac<4>\rightarrow\frac<4><\infty>\rightarrow 0\)
Второе слагаемое \(\frac<18>\rightarrow\frac<18><\infty>\rightarrow 0\)
Третье слагаемое \(\frac\rightarrow\frac<1><1-0>=1\ne 0\)
Сумма слагаемых в пределе \(tgx\rightarrow\infty\) равна \(0+0+1=1\ne 0\)
\(cosx=0\) решением не является.
Ответ: \(-arctg10+\pi k\)

б) \(\frac<3>+1=7\frac<|cosx|>\)
ОДЗ: \(cosx\ne 0,\ x\ne\frac\pi2+\pi k\) \begin |cosx|= \begin cosx,\ -\frac\pi2+2\pi k\leq x\lt \frac\pi2+2\pi k\\ -cosx,\ \frac\pi2+2\pi k\leq x\lt \frac<3\pi2><2>+2\pi k \end \end 1) Решаем для положительного косинуса (1-я и 4-я четверти) \begin \frac<3>+1=7\frac\\ 3(1+tg^2x)+1-7tgx=0\\ 3tg^2-7tgx+4=0\\ (3tgx-4)(tgx-1)=0\\ \left[ \begin tgx=\frac43\\ tgx=1 \end \right. \Rightarrow \left[ \begin x=arctg\frac43+\pi k\\ x=\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(\frac\pi4,\ arctg\frac43,\ \frac<5\pi><4>\) и \(\pi+arctg\frac43\), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
\(\frac\pi4\) и \(arctg\frac43\).
Это означает, что в записи решения период будет не \(\pi k\), а \(2\pi k\). \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k \end \right. \end

2) Решаем для отрицательного косинуса (2-я и 3-я четверти) \begin \frac<3>+1=-7\frac\\ 3(1+tg^2x)+1+7tgx=0\\ 3tg^2x+7tgx+4=0\\ (3tgx+4)(tgx+1)=0\\ \left[ \begin tgx=-\frac43\\ tgx=-1 \end \right. \Rightarrow \left[ \begin x=-arctg\frac43+\pi k\\ x=-\frac\pi4+\pi k \end \right. \end

Полученное решение даёт 4 базовых точки на числовой окружности: \(-\frac\pi4,\ -arctg\frac43,\ \frac<3\pi><4>\) и \(\pi-arctg\frac43\), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
\(\frac<3\pi><4>\) и \(\pi-arctg\frac43\).
Это означает, что в записи решения будут выбранные точки с периодом \(2\pi k\). \begin \left[ \begin x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

3) Объединяем полученные решения: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\frac\pi4+2\pi k\\ x=\pi-arctg\frac43+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \end

По аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: \begin \left[ \begin x=arctg\frac43+2\pi k\\ x=\pi-arctg\frac43+2\pi k \end \right. \Leftrightarrow x=(-1)^k arctg\frac43+\pi k\\ \left[ \begin x=\frac\pi4+2\pi k\\ x=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^k \frac\pi4+\pi k\\ \end

Окончательно получаем: \( \left[ \begin x=(-1)^k arctg\frac43+\pi k\\ x=(-1)^k \frac\pi4+\pi k \end \right. \).
Ответ: \((-1)^k arctg\frac43+\pi k,\ \ (-1)^k \frac\pi4+\pi k\)

г) \(3sinx-4cosx=5\)
Способ 1. Вводим дополнительный угол:
\(p=\sqrt<3^2+4^2>=5\)
\(\frac35sinx-\frac45 cosx=1\)
\(sin\alpha=\frac35,\ cos\alpha=\frac45\)
\(sin\alpha sinx-cos\alpha cosx=1\)
\(cos\alpha cosx-sin\alpha sinx=-1\)
\(cos(x+\alpha)=-1\)
\(x+\alpha=\pi+2\pi k\)
\(x=-\alpha+\pi+2\pi k=-arcsin\frac35+\pi+2\pi k\)

Способ 2. Делаем универсальную подстановку: \begin sin\alpha=\frac<2tg\frac<\alpha><2>><1+tg^2\frac\alpha2>,\ \ cos\alpha=\frac<1-tg^2\frac\alpha2><1+tg^2\frac\alpha2>\\ 3\cdot \frac<2tg\frac<2>><1+tg^2\frac<2>>-4\cdot\frac<1-tg^2\frac<2>><1+tg^2\frac<2>>=5\\ \frac<6tg\frac<2>-4\left(1-tg^2\frac<2>\right)-5\left(1+tg^2\frac<2>\right)><1+tg^2\frac<2>>=0 \end \(1=tg^2\frac<2>\geq 1\), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: \begin -tg^2\frac<2>+6tg\frac<2>-9=0\Rightarrow tg^2\frac<2>-6tg\frac<2>+9=0\Rightarrow\left(tg\frac<2>-3\right)^2=0\Rightarrow tg\frac<2>=3\\ \frac<2>=arctg3+\pi k\Rightarrow x= 2arctg3+2\pi k \end

Докажем, что полученные ответы: $$ x=-arcsin\frac35+\pi+2\pi k\ \ \text<и>\ x=2arctg3+2\pi k $$ равнозначны, т.е. \(-arcsin\frac35+\pi=2arctg3\), и равны углы: $$ arcsin\frac35=\pi-2arctg3\ \ (*) $$ Пусть в правой части равенства (*) \(2arctg3=\varphi\). Тогда \(arctg3=\frac\varphi2\) и \(tg\frac\varphi2=3\).
А в левой части равенства (*) \(arcsin\frac35=\alpha\) и \(sin\alpha=\frac35\)
Угол \(0\lt arcsin\frac35\lt \frac\pi2\) расположен в 1-й четверти.
Угол \(\varphi=2arctg3\) расположен во 2-й четверти \((cos\varphi\lt 0,\ sin\varphi\gt 0)\). $$ cos\varphi=\frac<1-tg^2\frac\varphi2><1+tg^2\frac\varphi2>=\frac<1-3^2><1+3^2>=-\frac45,\ \ sin\varphi=\frac<2tg\frac\varphi2><1+tg^2\frac\varphi2>=\frac<2\cdot 3><1+3^2>=\frac35 $$ Получаем, что для угла \(\alpha:\ sin\alpha=\frac35,\ cos\alpha=\frac45\)
Для угла \(\varphi:\ sin\varphi=\frac35,\ cos\varphi=-\frac45\)
Откуда следует, что \(\alpha=\pi-\varphi\). Что и требовалось доказать.
Ответ: \(-arcsin\frac35+\pi+2\pi k\) или \(2arctg3+2\pi k\) (т.к. \(-arcsin\frac35+\pi=2arctg3)\)


источники:

http://ya-znau.ru/znaniya/zn/280

http://reshator.com/sprav/algebra/10-11-klass/osnovnye-metody-resheniya-trigonometricheskih-uravnenij/