Как решать уравнение вида asinx bcosx c

Семинар-практикум «Решение тригонометрических уравнений»

Разделы: Математика

Тема тригонометрических уравнений начинается со школьной лекции, которая строится в виде эвристической беседы. На лекции рассматривается теоретический материал и образцы решения всех типовых задач по плану:

  • Простейшие тригонометрические уравнения.
  • Основные методы решения тригонометрических уравнений.
  • Однородные уравнения.

На следующих уроках начинается самостоятельная отработка навыков, основанная на применении принципа совместной деятельности учителя и ученика. Сначала устанавливаются цели для учащихся, т.е. определяется, кто хочет знать не более того, что требуется государственным стандартом, а кто готов заниматься больше.

Итоговая диагностика создается с учетом уровневой дифференциации, что позволяет учащимся осознанно определять тот минимум знаний, который необходим для получения оценки “3”. Исходя из этого, отбираются разноуровневые материалы для диагностики знаний учащихся. Такая работа позволяет осуществить индивидуальный подход к учащимся, включить каждого в осознанную учебную деятельность, формировать навыки самоорганизованности и самообучения, обеспечивать переход к активному, самостоятельному мышлению.

Семинар проводится после отработки основных навыков решения тригонометрических уравнений. За несколько уроков до семинара ученикам даются вопросы, которые будут рассматриваться на нем.

Семинар состоит из трех частей.

1. Во вводной части рассматривается весь теоретический материал, включая знакомство с проблемами, которые возникнут при решении сложных уравнений.

2. Во второй части рассматриваются решение уравнений вида:

  • а cosx + bsinx = c.
  • a (sinx + cosx) + bsin2x + c = 0.
  • уравнения, решаемые через понижение степени.

В этих уравнениях применяются универсальная подстановка, формулы понижения степени, метод вспомогательного аргумента.

3. В третьей части рассматриваются проблемы потери корней и приобретение посторонних корней. Показывается, как надо отбирать корни.

Ученики работают в группах. Для решения примеров вызываются хорошо подготовленные ребята, которые могут показать и объяснить материал.

Семинар рассчитан на хорошо подготовленного ученика, т.к. на нем рассматриваются вопросы несколько выходящие за рамки программного материала. В него включены уравнения более сложного вида, и особо рассматриваются проблемы, возникающие при решении сложных тригонометрических уравнений.

Семинар проводился для учеников 10 – 11 классов. Каждый ученик получил возможность расширить и углубить свои знания по этой теме, сравнить уровень своих знаний не только с требованиями, предъявляемыми к выпускнику школы, но и с требованиями предъявляемыми поступающим в В.У.З.

СЕМИНАР

Тема: «Решение тригонометрических уравнений»

Цели:

  • Обобщить знания по решению тригонометрических уравнений всех типов.
  • Заострить внимание на проблемах: потеря корней; посторонние корни; отбор корней.

I. Вводная часть

1. Основные методы решения тригонометрических уравнений

  • Разложение на множители.
  • Введение новой переменной.
  • Функционально-графический метод.

2. Некоторые типы тригонометрических уравнений.

  • Уравнения, сводящиеся к квадратным уравнениям, относительно cos х = t, sin х = t.

Asin 2 x + Bcosx + C = 0; Acos 2 x + Вsinx + C = 0.

Решаются методом введения новой переменной.

  • Однородные уравнения первой и второй степени

Уравнение первой степени: Asinx + Bcosx = 0 разделим на cos x, получим Atg x + B = 0

Уравнение второй степени: Asin 2 x + Bsinx cosx + Сcos 2 x = 0 разделим на cos 2 x, получим Atg 2 x + Btgx + C = 0

Решаются методом разложения на множители и методом введения новой переменной.

  • Уравнение вида: Аsinx + Bcosx = C. А, В, С 0
  • Понижение степени:

1). Аcos2x + Вcos 2 x = C; Acos2x + Bsin 2 x = C.

Решаются методом разложения на множители.

2). Asin2x + Bsin 2 x = C; Asin2x + Bcos 2 x = C.

  1. Сводятся к однородным: С = С(sin 2 х + cos 2 х).
  2. Сводятся к уравнению: Аsin2x + Bcos2x = C.
  • Уравнение вида: A(sinx + cosx) + Bsin2x + C = 0.

Сводятся к квадратным относительно t = sinx + cosx; sin2x = t 2 – 1.

3. Формулы.

  • Универсальная подстановка:

х + 2 n; Проверка обязательна!

  • Понижение степени: cos 2 x = (1 + cos2x): 2; sin 2 x = (1 – cos 2x): 2
  • Метод вспомогательного аргумента.

Acosx + Bsinx заменим на Csin (x + ), где sin = а/С; cos= в/С;

– вспомогательный аргумент.

4. Правила.

  • Увидел квадрат – понижай степень.
  • Увидел произведение – делай сумму.
  • Увидел сумму – делай произведение.

5. Потеря корней, лишние корни.

  • Потеря корней: делим на g(х); опасные формулы (универсальная подстановка). Этими операциями сужаем область определения.
  • Лишние корни: возводим в четную степень; умножаем на g(х) (избавляемся от знаменателя). Этими операциями расширяем область определения.

II. Примеры тригонометрических уравнений

1. Уравнения вида Asinx + Bcosx = C

1)Универсальная подстановка.О.Д.З. х – любое.

3 sin 2x + cos 2x + 1= 0.

tgx = u. х /2 + n;

u = – 1/3.

tg x = –1/3, x = arctg (–1/3) + k, k Z.

Проверка: 3sin( + 2n) + cos( + 2n) + 1= 3 sin + cos + 1 = 0 – 1 + 1 = 0.

х = /2 + n, n э Z. Является корнем уравнения.

Ответ: х = arctg(–1/3) + k, k Z. x = /2 + n, n Z.

2)Функционально-графический метод. О.Д.З. х – любое.

Sinx – cosx = 1
Sinx = cosx + 1.

Построим графики функций: y = sinx, y = cosx + 1.

Ответ: х = /2 + 2 n, Z ; x = + 2k, k Z.

3) Введение вспомогательного аргумента. О.Д.З.: х – любое.

8cosx + 15 sinx = 17.

8/17 cosx + 15/17 sinx = 1, т.к. (8/17) 2 + (15/17) 2 = 1, то существует такое , что sin = 8/17,

cos = 15/17, значит sin cosx + sinx cos = 1; = arcsin 8/17.

sin (x + ) = 1.

Ответ: x = /2 + 2n – , x = /2 + 2n – arcsin 8/17, n Z.

2. Понижение порядка: Acos2x + Bsin2x = C. Acos2x + Bcos2x = C.

1). sin 2 3x + sin 2 4x + sin 2 6x + sin 2 7x = 2. О.Д.З.: х – любое.

1 – cos 6x + 1 – cos 8x + 1 – cos 12x + 1 – cos 14x = 4
cos 6x + cos 8x + cos 12x + cos 14x = 0
2cos10x cos 4x + 2cos 10x cos 2x = 0
2cos 10x(cos 4x + cos 2x) = 0
2cos10x 2cos3x cosx = 0
cos10x = 0, cos3x = 0, cosx = 0.

Ответ: х = /20 + n/10, n Z. x = /6 + k/3, k Z, x = /2 + m, m Z.

Приk = 1 и m = 0
k = 4 и m = 1.
серии совпадают.

3. Сведение к однородному. Asin2x + Bsin 2 x = C, Asin2x + Bcos 2 x = C.

1) 5 sin 2 x + 3 sinx cosx + 6 cos 2 x = 5. ОДЗ: х – любое.
5 sin 2 х + 3 sinx cosx + 6cos 2 х – 5 sin 2 х – 5 cos 2 х = 0
3 sinxcosx + cos 2 х = 0 (1) делить на cos 2 х нельзя, так как теряем корни.
cos 2 х = 0 удовлетворяет уравнению.
cosx ( 3 sinx + cosx ) = 0
cosx = 0, 3 sinx + cosx = 0.
х = /2 + k, k Z. tgx = –1/3 , x = –/6 + n, n Z.

Ответ: х = /2 + k, k Z. , x = –/6 + n, n Z

4. Уравнение вида: А(sinx + cosx) + В sin2x + С = 0.

1). 4 + 2sin2x – 5(sinx + cosx) = 0. О.Д.З.: х – любое.
sinx + cosx = t, sin2x = t 2 – 1.
4 + 2t 2 – 2 – 5t = 0, | t | 2 – 5t + 2 = 0. t1 = 2, t2 = Ѕ.
sinx + cosx = Ѕ. cosx = sin(x + /2),
sinx +sin(x + /2) = 1/2,
2sin(x + /4) cos(–/4) = 1/2
sin(x + /4) = 1/22;
x +/4 = (–1) k arcsin( 1/2 O 2 ) + k, k Z.

Ответ: х = (–1) k arcsin(1/22) – /4 + k, k Z.

5. Разложение на множители.

1) cos 2 х – 2 cosx = 4 sinx – sin2x
cosx(cosx – 2) = 2 sinx (2 – cosx),
(cosx – 2)(cosx + 2 sinx) = 0.

1) сosx = 2, корней нет.
2) сosx + 2 sinx = 0
2tgx + 1 = 0

Ответ: x = arctg(1/2) + n, n Z.

III. Проблемы возникающие при решении тригонометрических уравнений

1. Потеря корней: делим на g(х); применяем опасные формулы.

1) Найдите ошибку.

1 – сosx = sinx *sinx/2,
1 – сosx = 2sin 2 х/2 формула.
2 sin 2 х/2 = 2 sinx/2* сosx/2* sinx /2 разделим на 2 sin 2 х/2,
1 = сosx/2
х/2 = 2 n, x = 4n, n ‘ Z.
Потеряли корни sinx/2 = 0, х = 2k, k Z.

Правильное решение: 2sin 2 х/2(1 – сosx /2) = 0.

sin 2 х/2 = 0
x = 2k, k Z.
1 – сosx /2 = 0
x = 4p n, n Z.

2. Посторонние корни: освобождаемся от знаменателя; возводим в четную степень.

1). (sin4x – sin2x – сos3x + 2sinx – 1) : (2sin2x – 3 ) = 0. О.Д.З.: sin2x 3 / 2.

2сos3х sinx – сos3x + 2sinx – 1 = 0
(сos3x + 1)(2sinx – 1) = 0

1). сos3x + 1 = 0
х = /3 + 2n/3, n Z.
2). 2sinx – 1 = 0
x = (–1) k /6 + k, k Z.

I. х = /3 + 2n/3
1. n = 0
sin 2 /3 = 3 / 2
не удовлетворяют. О.Д.З.

2. n = 1
sin 2= 0
удовлетворяют О.Д.З.

3. n = 2
sin 2/ 3 = –3 / 2
удовлетворяют О.Д.З.

II. x = (–1) k /6 + k, k Z
1. k = 0
sin 2/6 = 3 / 2
не удовлетворяют О.Д.З.
2. k = 1
sin 2*5/6 = –3 / 2
удовлетворяют О.Д.З.

Ответ: х = + 2k, x = 5/3 + 2k, x = 5/6 + 2k, k Z.

2). введем подстановку t = 2x,
, cos t > 0.
1 – sin t = 2 cos 2 t

1). sin t = –1,
t = – /2 + 2 k, k Z;
2). sin t = 1/2,
t = (–1) n /6 + n, n Z;

I. t = – /2 + 2 k, k Z;
1. k = 0
t = – /2
удовлетворяют О.Д.З.
II. t = (–1) n /6 + n, n Z;
1. n = 0
t = /6
удовлетворяют О.Д.З.
2. n = 1
t = 5 /6
не удовлетворяют О.Д.З.
Ответ:
t = – /2 + 2 k,
x = – /4 + k,
k Z,
t = /6 + 2 n,
x = /12 + n,
n Z.

3. Отбор корней.

1). tgx + tg2x = tg3x О.Д.З.: х /2+ k, x /4 + k, x /6 + k, k Z.

sin3x sinx sin2x = 0
sin3x = 0
x = n/3, n Z,

n = 0, x = 0 уд.
n = 1, x = /3 уд.
n = 2, x = 2 /3 уд.
n = 3, x = уд.
n = 4, x = 4 /3 уд.
n = 5, x = 5 /3 уд.

sinx = 0
x = h, h Z,

h = 0, x = 0 уд.
h = 1, x = уд.
h = 2, x = 2 уд.

sin2x = 0
x = m/2, m Z.

m = 0, x = 0 уд.
m = 1, x = /2 не уд.
m = 2, x = уд.
m = 3, x = 3 /2 не уд.

Ответ: x = n/3, n Z.

Урок+презентация по теме: «Решение тригонометрических уравнений вида a sin x + b cos x = c «

Урок и презентация по теме: «Решение тригонометрических уравнений вида a sin x + b cos x = c» (10-11 классы).

Целевая аудитория: для 10 класса

Автор: Мишурова Любовь Александровна
Место работы: МОУ СОШ № 2 г. Радужный ХМАО-ЮГРА
Добавил: elenaropot1

Физкультминутки обеспечивают кратковременный отдых детей на уроке, а также способствуют переключению внимания с одного вида деятельности на другой.

Уважаемые коллеги! Добавьте свою презентацию на Учительский портал и получите бесплатное свидетельство о публикации методического материала в международном СМИ.

Диплом и справка о публикации каждому участнику!

© 2007 — 2022 Сообщество учителей-предметников «Учительский портал»
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель: Никитенко Евгений Игоревич

Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.

Фотографии предоставлены

Как решать уравнение вида asinx bcosx c

Чтобы решить тригонометрическое уравнение надо путём тригонометрических преобразований свести его к простейшему тригонометрическому уравнению. Напомним формулы решений простейших тригонометрических уравнений.

1. `sinx=a`. Если `|a|>1`, решений нет. Если `|a| 1`, решений нет. Если `|a| Уравнение распадается на два:

1) `2sinx-1=0`, `sinx=1/2` и `x=(-1)^npi/6+pin,n in Z`.

2) `3cosx+1=0`, `cosx=-1/3` и `x=+- arccos(-1/3)+2pin,n in Z`.

Отметим, что в сериях решений 1) и 2) не было бы ошибкой использовать разные буквы (например, `n` и `m`), т. к. идёт перечисление решений.

Используя формулу приведения `sin2x=cos(pi/2-2x)`, преобразуем наше уравнение `cos(pi/2-2x)+cos(5x-pi/6)=0` или `2cos((3x+pi/3)/2)*cos((7x-(2pi)/3)/2)=0`.

Уравнение распадётся на два:

1) `cos((3x+pi/3)/2)=0`; `(3x+pi/3)/2=pi/2+pin,ninZ`;

II. Сведение уравнения к алгебраическому от одного переменного

Решить уравнение `4sin^3x=3cos(x+(3pi)/2)`.

По формуле приведения `cos(x+(3pi)/2)=sinx`,

поэтому уравнение запишется: `4sin^3x=3sinx`.

Отметим, что в случае двух уравнений `sinx=+-(sqrt3)/2` мы записали не объединение стандартных формул `(-1)^n(+-pi/3)+pin,ninZ`, а более простую, которая получается, если изобразить решения этих уравнений на тригонометрическом круге (рис. 1). (Две верхние точки – решения уравнения `sinx=(sqrt3)/2`, а две нижние – решения уравнения `sinx=-(sqrt3)/2`).

`x=pin,ninz`; `x=+-pi/3+pin,n inZ`.

Решить уравнение `cos2x+sin^2x=0,5`.

Воспользуемся формулой `cos2x=1-2sin^2x`.

Получим: `1-sin^2x=0,5` или `sin^2x=1/2`, `sinx=+-1/sqrt2`.

Это уравнение можно решить и пользуясь формулой `sin^2x+(1-cos2x)/2`. Тогда оно преобразуется к виду: `cos2x=0`, `2x=pi/2+pin,ninZ`, или

Геометрически множества точек (1) и (2) совпадают (рис. 2). Так что решения тригонометрических уравнений могут быть записаны в разной форме.

III. Однородные уравнения

(хотя формально эти уравнения можно отнестик предыдущему типу)

Решить уравнение `5sin^2x-4sinx*cosx-cos^2x=0`.

Это однородное уравнение второго порядка. Так как `cosx!=0` (иначе из нашего уравнения следовало бы, что `sinx=0` что противоречит основному тригонометрическому тождеству `sin^2x+cos^2x=1`), то разделим наше уравнение на `cos^2x`. Получим уравнение `5″tg»^2x-4″tg»x-1=0`. Откуда `»tg»x=1` или `»tg»x=-1/5`. Следовательно, `x=pi/4+pin,ninZ`, или `x=-«arctg»1/5+pin,ninZ`.

Решить уравнение `2+3sinxcosx=7sin^2x`.

Воспользуемся основным тригонометрическим тождеством `1=sin^2x+cos^2x`. Преобразуем наше уравнение к однородному уравнению второго порядка: `2(sin^2x+cos^2x)+3sinxcosx=7sin^2x` или `5sin^2x-3sinxcosx-2cos^2x=0`. Здесь `cosx!=0` (в противном случае из последнего уравнения следовало бы, что `sinx!=0` что противоречит основному тригонометрическому тождеству). Делим последнее уравнение на `cos^2x`. Получаем уравнение `5″tg»^2x-3″tg»x-2=0`.

Откуда `»tg»x=1` или `»tg»x=-2/5`. И значит, `x=pi/4+pin,ninZ`, или `x=-«arctg»2/5+pin,ninZ`

Наконец рассмотрим уравнение, сводящееся к однородному третьего порядка.

Решить уравнение `sin^3x+13cos^3x-cosx=0`.

Перепишем это уравнение так:

Это однородное уравнение третьего порядка. Деля его на `cos^3x` (`cosx!=0` для решений нашего уравнения), получим уравнение относительно `»tg»x`

Делаем замену: `t=»tg»x`. Алгебраическое уравнение `t^3-t^2+12=0` имеет корень `t=-2` (находится подбором среди целых делителей числа `12`). Далее деля многочлен `t^3-t^2+12` на `(t+12)`, раскладываем левую часть алгебраического уравнения на множители

Уравнение `t^2-3t+6=0` не имеет действительных корней, т. к. `D sqrt2` не даёт решений. Число `|1-sqrt3| при `2x+varphi=pi/2+2pin,ninZ`.

`max_Rf(x)=-2`, `min_R f(x)=-12`.

Рассмотрим теперь более сложные тригонометрические уравнения, в которых надо делать отбор корней.

V. Рациональные тригонометрические уравнения

Решить уравнение `(cos2x+cosx+1)/(2sinx+sqrt3)=0`.

Не будем решать это неравенство, а изобразим на тригонометрическом круге (рис. 3а) точки, не удовлетворяющие ОДЗ.

Решаем уравнение `cos2x+cosx+1=0`.

Преобразуем его: `(2cos^2x-1)+cosx+1=0`, `2cos^2x+cosx=0`,

Изобразим решения уравнения `cosx=0` на тригонометрическом круге (рис. 3б). Они удовлетворяют ОДЗ.

Изобразим решения уравнения `cosx=-1/2` на тригонометрическом круге (рис. 3в). Мы видим, что точки `x=-(2pi)/3+2pin,ninZ`, не удовлетворяют ОДЗ, а точки `x=(2pi)/3+2pin,ninZ`, удовлетворяют ОДЗ. Таким образом,

Решить уравнение `(sinx)/(sin3x)+(sin5x)/(sinx)=8cosxcos3x`.

Умножим уравнение на `sinx*sin3x`. Получим:

Преобразуем это уравнение:

Ещё раз воспользуемся формулой

в правой части последнего уравнения и умножим его на `2`. Получим

`(1-cos2x)+(cos2x-cos8x)=2(cos4x-cos8x)` или `1+cos8x-2cos4x=0`.

Далее: `1+(2cos^2 4x-1)-2cos4x=0`, `2cos4x(cos4x-1)=0 iff` $$ \iff \left[\begin\mathrm4x=1.\\ \mathrm4x=0.\end\right.$$

Если `cos4x=1`, то `4x=2pin,x=(pin)/2,ninZ`.

1. Изображаем точки

на тригонометрическом круге (рис. 4а). Геометрически их `4` штуки (для `n=0,1,2,3` – далее они повторяются).

2. Изображаем точки

которые не удовлетворяют ОДЗ на тригонометрическом круге (4б). Их `6` штук (для `m=0,1,2,3,4,5` – далее они повторяются).

Видно, что совпадения точек в `(3)` и `(4)` будут при `x=pin,ninZ`. Эти значения надо исключить из решения, т. е. в ответ пойдут точки

С решениями уравнения

или `x=pi/8+(pin)/4,ninZ`, можно поступить аналогично, сделав отбор на тригонометрическом круге. Но когда точек–решений на тригонометрическом круге много, и много точек, не входящих в ОДЗ, то удобнее воспользоваться аналитическим способом отбора решений. В данном случае точек — решений на тригонометрическом круге в серии `x=pi/8+(pin)/4,ninZ`, будет `8` штук (различные при `n=0, 1, 2, 3, 4, 5, 6, 7` – далее они повторяются), а точек, не входящих в ОДЗ на тригонометрическом круге `6`. Посмотрим, есть ли совпадения, т. е. существуют ли целые `m` и `n` такие, что

`pi/8+(pin)/4=(pim)/3 iff 1/8+n/4=m/3 iff`

`iff 3+6n=8m iff 3=2(4m-3n)`.

Последнее равенство невозможно, т. к. слева стоит нечётное число, а справа чётное.

Отметим, что и для решений уравнения `cos4x=1` отбор можно было сделать аналитически. А именно смотрим, существуют ли целые `m` и `n` такие, что `(pin)/2=(pim)/3 iff 3n=2m`. Видим, что `n` делится на `2`. Тогда `n=2k` и `m=3k,kinZ`. Т. е. из решения уравнения `cos4x=1` надо исключить `x=(pin)/2`, где `n=2k`, т. е. оставить `x=(pin)/2` с `n=2k+1,kinZ`. Но при `n=2k+1` в серии `x=(pin)/2` останутся `x=pi/2(2k+1)=pi/2+pik,kinZ`, что и было нами получено на тригонометрическом круге.

Иногда отбор решений предлагается сделать в условии задачи.


источники:

http://www.uchportal.ru/load/24-1-0-5181

http://zftsh.online/articles/4750