Как решать уравнения формула умножения

Формулы сокращенного умножения с примерами

Формулами сокращенного умножения (ФСУ) называют несколько наиболее часто встречающихся в практике случаев умножения многочленов.

ФСУ используются при упрощении алгебраических выражений (в том числе в работе с алгебраическими дробями ), решении уравнений и неравенств , при разложении на множители и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.

Квадрат суммы

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: \((a+b)^2\). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, \((a+b)^2=(a+b)(a+b)\). Теперь мы можем просто раскрыть скобки, перемножив их как делали это здесь , и привести подобные слагаемые. Получаем:

А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:

Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:

Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите свойства степеней и тему приведения одночлена к стандартному виду .

Пример. Преобразуйте выражение \((1+5x)^2-12x-1 \) в многочлен стандартного вида.

Раскроем скобки, воспользовавшись формулой квадрата суммы.

…и приведем подобные слагаемые.

Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример. Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.

Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего. Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: \(a^2+2ab+b^2=(a+b)^2\)

Вот теперь вычислять гораздо приятнее!

Квадрат разности

Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для \((a-b)^2\):

В более краткой записи имеем:

Квадрат разности: \((a-b)^2=a^2-2ab+b^2\)

Применяется она также, как и предыдущая.

Пример. Упростите выражение \((2a-3)^2-4(a^2-a)\) и найдите его значение при \(a=\frac<17><8>\).

Если сразу подставить дробь в выражение – придется возводить ее в квадрат и вообще делать объемные вычисления. Попробуем сначала упростить выражение, воспользовавшись формулой выше и раскрыв скобки .

Теперь приведем подобные слагаемые.

Вот теперь подставляем и наслаждаемся простотой вычислений.

Разность квадратов

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

Разность квадратов \(a^2-b^2=(a+b)(a-b)\)

Эта формула одна из наиболее часто применяемых при разложении на множители и работе с алгебраическими дробями .

Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус!
Попробуем воспользоваться формулой.

Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки.

Воспользуемся формулами степеней: \((a^n )^m=a^\) и \(a^n b^n=(ab)^n\).

Ну, а теперь пользуемся формулой \(a^2-b^2=(a+b)(a-b)\), где \(a=5x^2\) и \(b=m^5 t^3\).

Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.

На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем).
Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).

Теперь немного преобразуем слагаемые в скобке:
\(4xy\) запишем как \(2·x·2y\),
а \(4y^2\) как \((2y)^2\).

Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой \(a=x\), \(b=2y\). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как \(3\) в квадрате.

Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой \(a=(x-2y)\), \(b=3\). Раскладываем по ней к произведению двух скобок.

И вот теперь сокращаем вторую скобку числителя и весь знаменатель.

Решение уравнений умножением

Неизвестная величина может быть связана с известной величиной не только знаком + или -, но может быть разделена на какую-нибудь величину, как в этом уравнении: $\frac = b$.

Здесь решение не может быть найдено, как в предыдущих примерах, переносом члена уравнения. Но если оба члена уравнения умножить на a, уравнение примет вид
$x = ab.$

То есть, знаменатель дроби в левой части сокращается. Это может быть доказано свойствами дробей.

Когда неизвестная величина разделена на известную величину, уравнение решается путем умножения каждой стороны на эту известную величину.

Те же самые переносы должны быть сделаны в этом случае, как и в предыдущих примерах. Однако надо помнить, что умножать необходимо каждый член уравнения.

Пример 1. Решите уравнение $\frac + a = b + d$
Умножаем обе стороны на $c$
Произведение будет $x + ac = bc + cd$
И $x = bc + cd — ac$.

Пример 1. Решите уравнение $\frac + d = h$
Умножаем на $a + b$ $x + ad + bd = ah + bh$.
И $x = ag + bh — ad — bd.$

Когда неизвестное значение находится в знаменателе дроби, уравнение решается похожим способом, то есть умножением уравнения на знаменатель.

Пример 3. Решите уравнение $\frac<6> <10-x>+ 7 = 8$
Умножая на $10 — x$ $6 + 70 — 7x = 80 — 8x$
Тогда $x = 4$.

Хотя это и не обязательно, но часто очень удобно избавиться от знаменателя дроби, состоящего только из известных величин. Это можно сделать, похожим способом, когда избавляются от знаменателя, включающего в себя неизвестную величину.

Возьмем для примера $\frac = \frac + \frac$
Умножаем на a $x = \frac + \frac$
Умножаем на b $bx = ad + \frac$
Умножаем на c $bcx = acd + abh$.

Или, мы можем умножить на произведение всех знаменателей сразу.

В этом же самом уравнении $\frac = \frac + \frac$
Умножаем члены на abc $\frac = \frac + \frac$

После сокращения каждого одинакового значения в одной дроби, получим $bcx = acd + abh$, как и в предыдущем варианте. Отсюда,

В уравнении можно избавиться от дробей, умножая каждую сторону уравнения на все знаменатели.

При избавлении от дробей в уравнении необходимо соблюдать правильность написания знаков и коэффициентов каждой дроби в процессе раскрытия скобок

Уравнение $\frac = c — \frac<3b - 2hm - 6n>$ является
равным этому уравнению $ar — dr = crx -3bx + 2hmx + 6nx$.

Тема урока: «Решение линейных уравнений, содержащих формулы сокращенного умножения»

Разделы: Математика

Цели урока:

Оборудование: печатные бланки, таблица.

Тип урока: урок- семинар комплексного применения знаний, умений и навыков.

1.Организационный момент. Сообщается план семинара.
2.Сообщение по теме « Уравнение»
3. Решение линейных уравнений.
4.Сообщение о формулах сокращённого умножения.

(Работа у доски и по карточкам.)

а) Решение уравнений, содержащих квадрат суммы.
б) Решение уравнений, содержащих квадрат разности.
в) Решение квадратных уравнений, содержащих разность квадрата.
г) Решение уравнений, содержащих несколько формул.

5. Решение задачи.
6. Творческая работа учащихся.
7. Подведение итогов урока.

Ход урока.

1.Вступительное слово учителя.

Один начинающий волшебник, герой шуточной песенки, неумело обращался с заклинаниями, в результате вместо грозы у него получилась коза, а вместо утюга слон. Чтобы решить уравнение, тоже нужно совершить ряд превращений (алгебраических преобразований) и делать их нужно очень осмотрительно. Сегодня мы ещё раз увидим, какая удивительная сила заключена в формулах сокращённого умножения и как ловко они работают при решении уравнений.
Прежде всего, нужно чётко понимать, чем вы занимаетесь, когда решаете уравнение. Что, значит, решить уравнение и нужно знать, что главная задача при решении любого уравнения — свести его к простейшему.
И сегодня нам будут помогать формулы Сокращённого умножения.

2. Сообщение по теме «Уравнение»

3. Решение линейных уравнений у доски (учащиеся класса записывают решения в тетрадях)

а) 2-3(x+2)=5-2x;
2-3x-6=5-2x,
-3x+2x=5-2+6
-x =9
x=-9
Ответ:-9.
б) 20+4(2x-5)=14x+12
20+8x-20=14x+12,
8x-14x=12,
-6x=12,
x=-2,
Ответ: -2.

Решение уравнений по карточкам.
в) 4(2-3x)+7(6x+1)-9(9x+4)=30
г) 3-5(x+1)=6-4x.
Сообщение №2.
Слово о формулах.

4. Решение уравнений, содержащих квадрат суммы и квадрат разности.

а) x+(5x+2)2 =25(1+x2).
б) (x-6)2-x(x+8)=2.
Решение уравнений по карточкам.
в) (2-x)2-x(x+1,5)=4
г) x(x-1)-(x-5)2=2.

5. Решение уравнений, в которых содержится формула разности квадратов.

Работа у доски.
8x(1+2x)-(4x+3)(4x-3)=2x.
8x+16×2-(16×2-9)=2x,
8x+16×2-(16×2-9)=2x,
8x+16×2-16×2+9=2x,
8x-2x=-9,
6x=-9,
x=-1,5
Ответ: -1,5

Решение задачи.
Сторона первого квадрата на 2см. больше стороны второго, а площадь первого на 12 см больше площади второго. Найдите периметры этих квадратов.

Пусть x см сторона второго квадрата. Тогда(x+2) см сторона первого квадрата. Площадь первого (x+2) 2 см 2 ,а площадь второго x 2 .
Составляем уравнение:
(x+2) 2 -x 2 =12
x 2 +4x+4-x 2 =12,
4x=12-8,
4x=8,
x=2.
Если x=2,то 4x=4*2=8
Если x=2, то 4(x+2)=4(2+2)=16.
Ответ:16см,8см.

6. Решение разных уравнений, содержащих формулы сокращённого умножения.

7.Творческая работа учащихся. Заполнение таблицы.

Узнайте фамилию величайшего математика XVII века. Для этого зачеркните
буквы, не связанные с найденными ответами.
(Декарт)

-98,2-23,413,11,715-1,517113
ДПЕФКСАИРГШТ

Приложение к уроку.
Решение линейных уравнений.

4(2-3x)+7(6x+1)-9(9x+4)=30
8-12x+42x+7-81-36=30,
51x-21=30,
51x=51
x=1
Ответ: 1.
3-5(x+1)=6-4x,
3-5x-5=6-4x,
-5x+4x=6-3+5,
-x=8x= -8.
Ответ:-8.

Решение уравнений, содержащих квадрат суммы и квадрат разности.

x+(5x+2) 2 =25(1+x 2 )
x+(25x 2 +20+4)=25(1+x 2 )
x+25x 2 +20x+4=25+25x 2 ,
21x+25x 2 -25x 2 =25-4,
21x=21
x=1
Ответ:1.
(x -6) 2 -x(x+8)=2
x 2 -12x+36-x 2 -8x=2
-20x=2-36,
-20x=-34,
x=1,7
Ответ: 1,7.

Работа по карточкам.

(2-x)2-x(x+1,5)=4,
4-4x+x 2 -x 2 -1,5x=4,
-4x-1,5x=4-4,
-5,5 x=0
Ответ:0.
x(x-1)-(x-5) 2 =2
x 2 -x-(x 2 -10x+25)=2,
x 2 -x-x 2 +10x-25=2
9x=27
x=3
Ответ: 3.

Решение разных уравнений содержащих несколько формул сокращённого умножения.

(x-4x)+(x+4)+(3x-4)(x+2)=(2x+3) 2
x 2 -16+3x 2 +6x-4x-8=4x 2 +12x+9
-10x=33
x=-3,3
Ответ:3,3.
( 2x+3)2-4(x-1)(x+1)=49
4x 2 +12x+9-4(x 2 -1)=49
4x 2 +12x+9-4x 2 +4=49
12x+13=49
12x=36
X=3
Ответ: 3.

8. Подведение итогов урока.