Как решать уравнения функции 9 класс

Виды уравнений и способы их решения в 9-м классе

Разделы: Математика

Перед уроком были изучены темы “Уравнения с одной переменной”, “Целые рациональные уравнения и основные методы решения целых рациональных уравнений”, “Дробно-рациональные уравнения”, “Уравнения с модулем и параметрами”.

За две недели до обобщающего урока на стенде “Готовься к экзамену” было предложено:

  1. Прорешать из экзаменационного сборника задания второго раздела (№ 71–101).
  2. Вопросы по теоретическому материалу.
  3. Примерное оформление экзаменационного задания.
  4. Сроки индивидуальных и групповых консультаций.

Вопросы по теоретическому материалу

  1. Определение уравнения с одним неизменным.
  2. Корень уравнения.
  3. Что значит решить уравнение?
  4. Определение области допустимых значений.
  5. Когда два уравнения являются равносильными?
  6. Когда одно уравнение является следствием другого?
  7. Какие тождественные преобразования приводят к равносильным уравнениям?
  8. Особенность тождественного преобразования “деление на выражение, содержащее переменную”.
  9. Виды уравнений, их стандартный вид, алгоритм решения.
  10. Основные методы решения уравнений с одним неизвестным.

а) учебник А-9 под ред. Н.Я. Виленкина, глава X, с. 157–189;
б) конспекты.

№ 93(1)
№ 5.60(а)
Галицкий, с. 51

если D = 0, то x = –3 при a = –3, но x = –3 не удовлетворяет условию, так как (x – 4)(x + 3) 0;

Среди найденных значений может быть появление посторонних корней, так как уравнение x² + (3 – a)x – 3a = 0 следствие исходного уравнения.

Чтобы x2 = a являлся корнем x 2 – 4 0, a – 4 0, a 4

x 2 + 3 0, то есть a – 3 0, a –3

Ответ: при a 4, a –3 корнем уравнения является x = a.

Задания к уроку подобраны с учетом подготовленности учащихся данного класса.

  • привести в систему знаний учащихся по теме;
  • повторить теорию решения уравнений;
  • выработать умение определить вид уравнения;
  • выразить наиболее рациональный способ решения данного уравнения;
  • формировать наблюдательность учащихся.

I. Организационный момент

Сообщение темы урока и его целей.

II. Повторение теории по решению уравнений

1. Что называется уравнением?

Ответ: Любое равенство вида некоторые функции называются уравнением с одной переменной (или с одной неизвестной).

2. Что называется корнем уравнения?

Ответ: Число a называется корнем (или решением) данного уравнения с одной переменной, если при подстановке числа a вместо x в обе части уравнения, получаем верное числовое неравенство, то есть при подстановке x = a обе части уравнения определены и их значения совпадают:

3. Что значит решить уравнение?

Ответ: Решить уравнение – это значит найти все его корни или доказать что их нет.

4. Как определяется область определения допустимых значений уравнения?

Ответ: ОДЗ называется пересечение множеств областей определения функций

5. Какие уравнения называются равносильными (эквивалентными)?

Ответ: Два уравнения называются равносильными, если все корни уравнения первого являются корнями второго и наоборот, все корни второго уравнения являются корнями первого.

6. А как определить уравнение следствие?

Ответ: Если все корни одного уравнения являются корнями второго уравнения, то второе уравнение называется следствием первого уравнения.

7. Какие тождественные преобразования приводят к равносильным уравнениям?

  • к обеим частям уравнения прибавить любую функцию, которая определена при всех значениях из ОДЗ. Следствие. Члены уравнения можно переносить из одной части уравнения в другую;
  • обе части уравнения умножить на любую функцию, определенную и отличную от нуля при всех допустимых значениях неизвестного. Также можно делить и умножать на число, отличное от нуля;
  • в обеих частях уравнения стоят функции, принимающие только неотрицательные значения, то при возведении в одну и ту же четную степень получаем уравнение, равносильное данному. Появлению “посторонних корней” приводят преобразования:
    а) приведение подобных членов – происходит расширение ОДЗ;
    б) сокращение дроби на выражение, содержащие неизвестное (тоже происходит расширение ОДЗ);
    в) умножение на выражение, содержащее неизвестное;
    г) освобождение дроби от знаменателя, содержащего неизвестное. Необходимо обязательно делить проверку или лучше перейти к смешанной системе.

8. Виды уравнений, их стандартный вид, алгоритм решения (в процессе решения).

Ответ:
а) Линейное;
б) квадратное;
в) уравнение высших порядков (биквадратным, возвратное, симметрическое);
г) уравнения содержащие модуль;
д) уравнение с параметром.]

9. Какие общие методы решения уравнений с одним неизвестным?

Ответ: Вынесение общего множителя (разложение на множители), замена переменной, использование ограниченности и монотонности функций, графически.

Понятие равносильности для нас понятие только вводится, и поэтому проведем тест, как же вы этим понятием владеете.

Тест рассчитан на 5–7 минут. Контрольные задания даются в двух вариантах. После окончания работы на доске вывешиваются контрольные ответы. За каждое правильно выполненное задание – 1 балл. После окончания работы ученик оценивает свою работу самостоятельно, затем разбираются неверные ответы (к заданиям предлагаются).

Корни всех приведенных уравнений находятся среди чисел –3, –2, 1, 2, 3. Укажите пары равносильных уравнений.

(x 2 – 6) 2 = x 2

(x – 1)(x 2 – 6) = (1 – x)x

(x – 2)(x 2 – 6) = –x(x – 2)

x 2 – 6 = x

(x 2 + x – 6)(x 2 – x – 6) = 0

x + 3 = 0

x – 2 = 0

(x – 1)(x – 2)(x + 3) = 0

Равносильные уравнения

Корни всех приведенных уравнений находятся среди чисел –2, –1, 1, 2. Укажите пары равносильных уравнений.

(x 2 – 2) 2 = x 2

(x – 1)(x 2 – 2) = x(x – 1)

(x – 2)(x 2 – 2) = x(x – 2)

x 2 – 2 = x

x + 1 = 0

(x 2 – 1)(x – 2) = 0

(x 2 – x – 2)(x 2 + x – 2) = 0

x – 2 = 0

Равносильные уравнения

VI. Решение задач

Ученик должен определить вид уравнения, алгоритм решения данного уравнения, обратить внимание на способы его решения, выбрать рациональный способ решения.

Задачи взяты из “Сборника задач по алгебре” для классов с углубленным изучением математики под редакцией М.Л. Галицкого.

1. Уравнение третьей степени, в стандартном виде. Метод решения – разложения на линейные множители (теорема Безу):

Так как это уравнение рациональное целое с целыми коэффициентами, то оно имеет целые корни, являющиеся делителями свободного члена: 21: 1; 3; 7; 21. x1 = 1 является корнем (убеждаемся подстановкой), поэтому многочлен левой части уравнения делится на двучлен х – 1.

Решим уравнение x² + 10x + 21 = 0. По теореме Виета корни: x2 = –3, x3 = –7, x1 = 1.

Как еще с помощью теоремы Безу можно было выполнить разложение на множители?

Ответ: Если множитель делится на x – 1 и на x + 3, то он делится и на их произведение.

Это уравнение четвертой степени. Метод решения – группировка. Если левая часть уравнения представлена в виде разложения на линейные множители, а в правой – число и выносящиеся: (x + a)(x + b)(x + b)(x + c) = A и a + b = c + d, в этом случае возможна группировка множителей.

Сделаем замену x² + x = t и получим уравнение

3. 5 – 12x³ + 14x² = 12x – 5, 5x² – 12x³ + 14x² – 12x + 5 = 0 возвратное уравнение членов степени. Так как x = 0 не является корнем данного уравнения, разделим почленно на x² и сгруппируем:

Сделаем замену:

4. – это дробно-рациональное уравнение, содержащее модуль.

Ответ: <0; 2; 4>

Алгоритм: а) находим нули модуля; б) дискриминант уравнения разбиваем на промежутки; в) раскрываем модуль на каждом из промежутков; г) выбираем ответ, учитывая данный промежуток; д) ответ – совокупность решений.

– это дробно-рациональное уравнение. Выделим квадрат разности:

Введем новую переменную и получим уравнение вида t² + 2t – 3 = 0. По теореме Виета корни этого уравнения t = 1 или t = –3.

6. ax² + 3ax – (a + 2) = 0 – это квадратное уравнение с параметром. При решении уравнения с параметрами необходимо выяснить, при каких значениях параметров уравнение имеет корни и сколько их в зависимости от параметров при которых это выражение действительно определяет корни уравнения, то есть найти при каком значении параметра: г) x – единственный корень.

При D > 0 уравнение имеет два различных действительных корня, то есть при

При D 4 – 133х³ + 48х² – 133х + 78 = 0.

5. Для каждого значения параметра а решить уравнение ax² – (2a + 7)x + a + 3 = 0.

6. Найдите все значения параметра b, при которых уравнение имеет ровно один корень.

7 * . Решить уравнение x 4 + 4х + 3 = 0.

2. Дается оценка работы учащихся на уроке, выставляются в журнал. Сообщается дата и время консультации перед итоговой контрольной работой по этой теме.

Как построить параболу? Что такое парабола? Как решаются квадратные уравнения?

Урок: как построить параболу или квадратичную функцию?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:

1 ) Формула параболы y=ax 2 +bx+c,
если а>0 то ветви параболы направленны вверх,
а 2 +bx+c=0;

a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

4) Найти несколько дополнительных точек для построения функции.

ПРАКТИЧЕСКАЯ ЧАСТЬ

И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

х -4 -3 -1 0
у 3 0 0 3

Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2

Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 2 +4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2

Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x1=2
x2=-2

Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0

Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

Алгебра. Урок 5. Графики функций

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Декартова система координат
  • Функция

Декартова система координат

Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

Координатные оси – прямые, образующие систему координат.

Ось абсцисс (ось x ) – горизонтальная ось.

Ось ординат (ось y ) – вертикальная ось.

Функция

Функция – это отображение элементов множества X на множество Y . При этом каждому элементу x множества X соответствует одно единственное значение y множества Y .

Прямая

Линейная функция – функция вида y = a x + b где a и b – любые числа.

Графиком линейной функции является прямая линия.

Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :

Если a > 0 , прямая будет проходить через I и III координатные четверти.

b – точка пересечения прямой с осью y .

Если a 0 , прямая будет проходить через II и IV координатные четверти.

b – точка пересечения прямой с осью y .

Если a = 0 , функция принимает вид y = b .

Отдельно выделим график уравнения x = a .

Важно : это уравнение не является функцией так как нарушается определение функции ( функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y ). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y . Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

Парабола

Графиком функции y = a x 2 + b x + c является парабола .

Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c :

  1. Коэффициент a указывает на то, куда направлены ветки параболы.
  • Если a > 0 , ветки параболы направлены вверх.
  • Если a 0 , ветки параболы направлены вниз.
  1. Коэффициент c указывает, в какой точке парабола пересекает ось y .
  2. Коэффициент b помогает найти x в – координату вершины параболы.
  1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
  • Если D > 0 – две точки пересечения.
  • Если D = 0 – одна точка пересечения.
  • Если D 0 – нет точек пересечения.

Гипербола

Графиком функции y = k x является гипербола .

Характерная особенность гиперболы в том, что у неё есть асимптоты.

Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

Ось x – горизонтальная асимптота гиперболы

Ось y – вертикальная асимптота гиперболы.

На графике асимптоты отмечены зелёной пунктирной линией.

Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.

0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/Гипербола-1.png 346w,/wp-content/uploads/2017/01/Гипербола-1-150×150.png 150w,/wp-content/uploads/2017/01/Гипербола-1-300×300.png 300w,/wp-content/uploads/2017/01/Гипербола-1-176×176.png 176w,/wp-content/uploads/2017/01/Гипербола-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/Гипербола-1.png»>

Если k 0, ветви гиперболы проходят через II и IV четверти.

Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .

Квадратный корень

Функция y = x имеет следующий график:

Возрастающие/убывающие функции

Функция y = f ( x ) возрастает на интервале , если большему значению аргумента (большему значению x ) соответствует большее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

Примеры возрастающих функций:

Функция y = f ( x ) убывает на интервале , если большему значению аргумента (большему значению x ) соответствует меньшее значение функции (большее значение y ) .

То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).

Примеры убывающих функций:

Для того, чтобы найти наибольшее значение функции , находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наибольшим значением функции.

Для того, чтобы найти наименьшее значение функции , находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наименьшим значением функции.

Задание №11 из ОГЭ 2020. Типовые задачи и принцип их решения.


источники:

http://tutomath.ru/uroki/kak-postroit-parabolu.html

http://epmat.ru/modul-algebra/urok-5-grafiki-funktsij/