Как решать уравнения корень 10 плюс 1

Иррациональные уравнения с кубическими радикалами

Разделы: Математика

Тема: «Иррациональные уравнения вида ,

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов:

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб.

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению ,

,

,

Пример 2. Решить уравнение .

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению

,

,

,

и рассмотрим полученное уравнение как квадратное относительно одного из корней

,

,

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка:

Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

,

(незначительная модификация известной формулы), тогда

Пример3. Решить уравнение .

Возведём уравнение в куб с использованием формул, приведённых выше.

,

Но выражение должно быть равно правой части. Поэтому имеем:

, откуда

.

Теперь при возведении в куб получаем обычное квадратное уравнение:

, и два его корня

,

Оба значения, как показывает проверка, правильные.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение .

Возводя, как и ранее, обе части в третью степень, имеем:

.

Откуда (учитывая, что выражение в скобках равно ), получаем:

, значит

. Получаем, .Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ: .

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство влечёт равенство . Заменим с на –с, получим:

и .

Нетрудно проверить тождество

,

Итак, если , то либо , либо . Уравнение можно представить в виде , .

Заменяя с на –с, получаем: если , то либо , либо

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение .

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда:

откуда очевидно, что

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Легко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ: Корней нет.

Пример 6. Решить уравнение .

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда

или

Возвращаясь к исходной переменной имеем:

х=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
  • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
  • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
  • Функция вида возрастает при к>0 и убывает при к 30.05.2009

Как решать иррациональные уравнения. Примеры.

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня — четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня — нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнение

Возведем обе части уравнения в квадрат.
x 2 — 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x1 = -2 — истинно:
При x2 = -2— истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение .

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

а) x — 90;

x9;

б) 1 — x0;

-x-1 ;

x1.

ОДЗ данного уранения: x.

Ответ: корней нет.

Пример 3. Решить уравнение=+ 2.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x — 1 — 8= x 3 — 1 + 4+ 4x;
=0;
x1=1; x2=0.
Произведя проверку устанавливаем, что x2=0 лишний корень.
Ответ: x1=1.

Пример 4. Решить уравнение x =.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: x[-1;).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

x1 =

x2 =

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 10 и x0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Ответ:

Пример 5 . Решить уравнение+= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 — х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 — 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x1 = 4, х2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Замечание. При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравнения= 12, пишут уравнение = 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6. Решить уравнение= 3.

Уединив первый радикал, получаем уравнение
=+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 — 3x + 3 + 6, равносильное уравнению

4x — 5 = 3(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 — 40x + 25 = 9(x 2 — Зх + 3), или

7x 2 — 13x — 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x1 = 2 удовлетворяет исходному уравнению, а второй x2 =— не удовлетворяет.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Пример 7. Решить уравнение 2x 2 — 6x ++ 2 = 0.

Введем вспомогательную переменную. Пусть y =, где y0, тогда получим уравнение 2y 2 + y — 10 = 0;
y1 = 2; y2 = —. Второй корень не удовлетворяет условию y0.
Возвращаемся к x:
= 2;
x 2 — 3x + 6 = 4;
x 2 -3x + 2 = 0;
x1 = 1; x2 = 2. Проверкой устанавливаем, что оба корня являются корнями иисходного уравнения.
Ответ: x1 = 1; x2 = 2.

Пример 8. Решить уравнение+=

Положим= t, Тогда уравнение примет вид t +=откуда получаем следствие: 2t 2 — 5t + 2 = 0 Решая это квадратное уравнение, находим два корня: t1 = 2 t2 =. Задача сводится теперь к решению следующих двух уравнений:
= 2,(*)=(**)

Возводя обе части уравнения (*) в куб, получаем 12 — 2x = 8x — 8; x1 = 2.

Аналогично, решив (**), находим x2 =.

Оба найденных корня удовлетворяют исходному уравнению, так как в процессе решения мы использовали (кроме замены неизвестного) только преобразование вида [f(x) = g(x)][f n (x) = g n (x)], а при таком преобразовании, как было отмечено выше, получается равносильное уравнение.

Ответ: х1 = 2, x2 =.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение квадратного уравнения.

С помощью этой математической программы вы можете решить квадратное уравнение.

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
— с помощью дискриминанта
— с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x — 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 — 5&6/5z +1/7z^2
Результат: \( 3\frac<1> <3>— 5\frac<6> <5>z + \frac<1><7>z^2 \)

При вводе выражения можно использовать скобки. В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\( -x^2+6x+1<,>4=0, \quad 8x^2-7x=0, \quad x^2-\frac<4><9>=0 \)
имеет вид
\( ax^2+bx+c=0, \)
где x — переменная, a, b и c — числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = —7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями.

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x — переменная, a, b и c — некоторые числа, причём \( a \neq 0 \).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \( a \neq 0 \), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
\( x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением. Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 — неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \( c \neq 0 \);
2) ax 2 +bx=0, где \( b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \( c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\( x^2 = -\frac \Rightarrow x_ <1,2>= \pm \sqrt< -\frac> \)

Так как \( c \neq 0 \), то \( -\frac \neq 0 \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \( b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\( x^2+\fracx +\frac=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\( x^2+2x \cdot \frac<2a>+\left( \frac<2a>\right)^2- \left( \frac<2a>\right)^2 + \frac = 0 \Rightarrow \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни — различитель). Его обозначают буквой D, т.е.
\( D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\( x_ <1,2>= \frac < -b \pm \sqrt> <2a>\), где \( D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \( x=-\frac <2a>\).
3) Если D 0), один корень (при D = 0) или не иметь корней (при D

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x1 и x2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\( \left\< \begin x_1+x_2=-p \\ x_1 \cdot x_2=q \end \right. \)


источники:

http://viripit.ru/Pag5_3.htm

http://www.math-solution.ru/math-task/quadr-eq