Как решать уравнения окружности примеры

Уравнение с двумя переменными и его график. Уравнение окружности

п.1. Понятие уравнения с двумя переменными

Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, \(\mathrm\) – гипербола.

Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = \(\mathrm<\frac1x>\) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

п.2. Обобщенные правила преобразования графика уравнения

Пусть F(x; y) = 0 – исходный график некоторой функции

Симметричное отображение относительно оси OY

Симметричное отображение относительно оси OX

Центральная симметрия относительно начала координат

Параллельный перенос графика на a единиц вправо

Параллельный перенос графика на a единиц влево

Параллельный перенос графика на b единиц вниз

Параллельный перенос графика на b единиц вверх

Сжатие графика к оси OY в a раз

Сжатие графика к оси OX в b раз

F(x; by) = 0
0 Например:

Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ \mathrm <(x-2)^2+(y-1)^2=9>$$

п.4. Примеры

Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: \( \mathrm<7>=-\frac<2> + 2 > \) – это прямая

б) xy + 4 = 0
Выразим y из уравнения: \( \mathrm> \) – это гипербола

в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом \( \mathrm=2> \)

г) x 2 + 5y – 2 = 0
Выразим y из уравнения: \( \mathrm<5>> \) – это парабола

Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
\( \mathrm<5>=-\frac25|x|+2> \)
Строим график для \( \mathrm \), а затем отражаем его относительно оси OY в левую полуплоскость.

б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

д) \(\mathrm<\frac<|x-1|><2>+2|y-2|=4>\)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.

Решение задач по теме: «Уравнение окружностей»

Разделы: Математика

За неделю до проведения урока класс делится на четыре группы. Каждая готовит презентацию, отражающую название команды.

1. Образовательные:

  • систематизация знаний, умений и навыков по теме “Метод координат”,
  • совершенствование навыков решения задач.
  • 2. Развивающие:

  • развитие математически грамотной речи,
  • логического мышления,
  • культуры диалога.
  • 3. Воспитательные:

  • воспитывать познавательную активность,
  • культуру общения,
  • культуру диалога.
  • Ход урока

    I. Организационный момент.

    В начале урока выдается командам оценочный лист ( Приложение 1 ) с целью самостоятельной оценки учащимися степени участия каждого члена команды в подготовке к уроку и его проведении.

    Рассказываются правила урока. За каждое правильное решение команде выдается лепесток определенного цвета:

    все ответы верные – красный;
    одна ошибка – зеленый;
    две ошибки – жёлтый.

    Лепестки крепятся на магнитную доску, образуя цветок.

    Итоговая оценка выставляется с учетом этого бланка, а также учитывается количество и цвет набранных командой лепестков в цветке на доске.

    2. Знакомство с командами (представление презентаций, Приложение 2 ).

    3. Актуализация знаний учащихся.

    – На последних уроках геометрии мы познакомились с еще одним способом решения задач МЕТОДОМ КООРДИНАТ.

    Задавая фигуры уравнением и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Так мы поступили, когда выразили через координаты основную геометрическую величину – расстояние между точками, а затем, когда вывели уравнение окружности и прямой.

    Пользуясь координатами, можно истолковывать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функций – первый пример такого применения метода координат

    Метод координат в соединении с алгеброй составляет раздел геометрии, называемый “Аналитической геометрией”.

    Сегодня я предлагаю еще раз поговорить об уравнении окружности и проследить, как алгебра помогает в решении геометрических задач.

    4. Разминка.

    – На доске записан ряд уравнений. Какие фигуры они задают?

    Команды получают карточки с заданием. Время обдумывания 2мин.

    По истечению времени идет опрос команд по очереди.

    1 7.
    2.8.
    3. 9.
    4. 10.
    5. 11.
    6. 12.

    Последнее уравнение вызывает сомнения т.к. ранее не встречалось в таком виде.

    Учитель показывает как, выделив полный квадрат, получить уравнение окружности.

    Оценить результат работы команд.

    Выясните, будет ли данные уравнения задавать окружность, если да, то укажите радиус и координаты центра. Если нет, то почему?

    Каждая из команд получают свою карточку. Время 7 минут.

    1. 1.
    2. 2.
    3. 3.
    1. 1.
    2 2
    3 3

    Последние уравнение в каждой карточке не задает окружность, и учащиеся поясняют почему. Оценить ответы.

    1. Как могут взаимораспологаться две окружности? Дается время(3 мин.). Предлогается ребятам нарисовать различные варианты на ватмане и показать рисунки. После демонстрации и обсуждения всевозможных вариантов Предлогается следующая задача.

    2. Как взаиморасположены линии заданные уравнениями?

    и

    Изобразите ответ на обратной стороне ватмана (на нем, заранее, нанесена система координат.)

    Ответ:

    O

    Значит: первая внутри второй.

    Результат этого задания оценивается следующим образом:

    Команда, выполнившая первая – красный; вторая – зеленый; третья – желтый

    После подведения итогов предлагается задача общая для всех команд.

    Командам выдается карточка с кратким описанием условия. Текст задачи зачитывается.

    Окружность задана уравнением .

    Точка с координатами (5;4) является центром другой окружности касающейся первой внешним образом. Напишите уравнение этой окружности.

    Вопросы для обсуждения:

    -Поможет ли рисунок в решении задачи?

    -Что можно узнать из уравнения первой окружности?

    -Что надо знать, чтобы записать уравнение второй окружности?

    -Как можно узнать радиус второй окружности?

    Ответ:

    Перед следующим заданием полезно повторить:

    Какая окружность называется описанной около треугольника?

    Что значит, точка принадлежит графику уравнения?

    Что необходимо знать для написания уравнения окружности?

    Написать уравнение окружности описанной около треугольника с заданными координатами вершин.

    Какие, алгебраические, приемы могут быть использованы для решения поставленной задачи? (составление систем уравнений и приемы их решения).

    3. С (3;-7)4. В (1;-4)
    Д (8;-2)К (4;5)
    К (6;2)Д (3;-2)
    1. 2.
    3. 4.

    Следующую задачу решает учитель.

    Задача: Что представляет собой множество точек плоскости, отношение расстояний от которых до двух данных точек есть величина постоянная?

    Решение: Впервые эту задачу сформулировал и решил Аполлоний Пергский, (260-170 гг. до н.э.)

    Решение получилось очень сложное – поскольку применены геометрические приемы. Однако в работах французского математика Рене Декарта эта задача решена более элегантно. Декарт применил метод координат.

    Я предлагаю посмотреть на это решение. Итак, пусть даны две точки ,А и В и некоторое положительное число k, равное отношению расстояний до точки М.

    1случай. Если k=1,тогда множество точек М есть серединный перпендикуляр к отрезку АВ.

    2 случай. Пусть k целое не отрицательное число не равное 1

    Для удобства решения возьмем k=2 , т.е. МА: МВ=2.

    Введем систему прямоугольных координат. Совместим начало отсчета с точкой В. В качестве положительной полуоси x возьмем луч ВА. (рис.2)

    Тогда получим следующие координаты точек: В(0,0), А(a,0), М(x,y). Пусть a=3 опять для простоты рассуждений.

    Тогда, пользуясь формулами расстояния между двумя точками, запишем:

    Получили уравнение окружности с центром в точке (-1;0) и радиусом r=2.

    Значение радиуса не случайно вспомним, что мы выбрали k=2.

    Решая задачу в общем виде т.е. при условии ,что точка А имеет координаты (a;0) и k1 получим уравнение окружности в виде

    .

    Такая окружность называется окружностью Апполония.

    Подводится итог урока. Выставляются оценки.

    Как составить уравнение окружности примеры

    Написать уравнение окружности

    Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.

    1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.

    Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:

    Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:

    2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).

    Так как центр окружности — точка A(8; -3), то a=8, b=-3.

    Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.

    Следовательно, уравнение данной окружности

    3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).

    Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка

    Центр окружности — точка O(1;-2). Значит, a=1, b=-2.

    Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,

    Таким образом, уравнение окружности с диаметром AB —

    4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).

    Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение

    получаем систему уравнений:

    Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим

    Приравняем правые части 2-го и 3-го уравнений:

    на -1 и сложив результат почленно с уравнением

    получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:

    Следовательно, уравнение окружности, проходящей через три данные точки —

    5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).

    Решение аналогично решению задания 4. В результате получим уравнение

    Уравнение окружности.

    Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.

    В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.

    Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.

    Геометрическая интерпретация уравнения окружности – это линия окружности.

    Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.

    Окружность с центром в точке А и радиусом R поместим в координатную плоскость.

    Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:

    Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.

    Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:


    Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.

    Примеры решения задач про уравнение окружности

    Задача. Составить уравнение заданной окружности

    Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.

    Решение.
    Обратимся к формуле уравнения окружности:
    R 2 = (x- a ) 2 + (y- b ) 2

    Подставим значения в формулу.
    Радиус окружности R = 4
    Координаты центра окружности (в соответствии с условием)
    a = 2
    b = -3

    Получаем:
    (x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
    или
    (x — 2 ) 2 + (y + 3 ) 2 = 16 .

    Задача. Принадлежит ли точка уравнению окружности

    Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.

    Решение.
    Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
    Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.

    В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
    подставим, согласно условию, координаты точки А(2;3), то есть
    x = 2
    y = 3

    Проверим истинность полученного равенства
    ( x — 2) 2 + ( y + 3) 2 = 16
    ( 2 — 2) 2 + ( 3 + 3) 2 = 16
    0 + 36 = 16 равенство неверно

    Таким образом, заданная точка не принадлежит заданному уравнению окружности.

    Уравнение с двумя переменными и его график. Уравнение окружности

    п.1. Понятие уравнения с двумя переменными

    Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
    y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, \(\mathrm \) – гипербола.

    Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

    Для наших примеров:
    F(x; y) = 2x – y + 5 = 0 – прямая
    F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
    F(x; y) = \(\mathrm \) – y = 0 – гипербола
    F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

    п.2. Обобщенные правила преобразования графика уравнения

    Пусть F(x; y) = 0 – исходный график некоторой функции

    Симметричное отображение относительно оси OY

    Симметричное отображение относительно оси OX

    Центральная симметрия относительно начала координат

    Параллельный перенос графика на a единиц вправо

    Параллельный перенос графика на a единиц влево

    Параллельный перенос графика на b единиц вниз

    Параллельный перенос графика на b единиц вверх

    Сжатие графика к оси OY в a раз

    Сжатие графика к оси OX в b раз

    F(x; by) = 0
    0 Например:

    Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ \mathrm $$

    п.4. Примеры

    Пример 1. Постройте график уравнения:
    а) 2x + 7y – 14 = 0
    Выразим y из уравнения: \( \mathrm =-\frac + 2 > \) – это прямая

    б) xy + 4 = 0
    Выразим y из уравнения: \( \mathrm > \) – это гипербола

    в) ( x+ 2) 2 + y 2 = 4
    Это – уравнение окружности с центром O(–2; 0), радиусом \( \mathrm =2> \)

    г) x 2 + 5y – 2 = 0
    Выразим y из уравнения: \( \mathrm > \) – это парабола

    Пример 2*. Постройте график уравнения:
    а) 2|x| + 5y = 10
    \( \mathrm =-\frac25|x|+2> \)
    Строим график для \( \mathrm \), а затем отражаем его относительно оси OY в левую полуплоскость.

    б) 3x + |y| = 6
    |y| = –3x + 6
    Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

    в) |x| + |y| = 2
    |y| = –|x| + 2
    Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

    г) |x – 1| + |y – 2| = 4
    Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

    д) \(\mathrm +2|y-2|=4>\)
    Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

    Пример 3. Постройте график уравнения:
    а) x 2 + y 2 + 4x – 6y + 4 = 0
    Выделим полные квадраты:
    (x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
    (x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.


    источники:

    http://urok.1sept.ru/articles/412785

    http://b4.cooksy.ru/articles/kak-sostavit-uravnenie-okruzhnosti-primery