Как решать уравнения относительно переменной

Как решать уравнения относительно переменной

В этом разделе обсуждается, как в символьном виде решать уравнения и системы уравнений. Команда Решить относительно переменной из меню Символика позволяет решить уравнение относительно некоторой переменной и выразить его корни через остальные параметры уравнения.

В этом разделе описывается также, как в символьном виде решить систему уравнений, используя блоки решения уравнений. Для этого требуется Mathcad PLUS.

Решать уравнение символьно гораздо труднее, чем численно. Может оказаться, что в символьном виде решение не существует. Это может быть вызвано рядом причин, обсуждаемых в разделе “Ограничения символьных преобразований”.

Решение уравнения относительно переменной

Чтобы решить уравнение относительно переменной:

  • Напечайте уравнение. Убедитесь, что для выведения знака равенства использована комбинация клавиш [Ctrl]=.
  • Выделите переменную, относительно которой нужно решить уравнение, щёлкнув на ней мышью.
  • Выберите Решить относительно переменной из меню Символика

Mathcad решит уравнение относительно выделенной переменной и вставит результат в рабочий документ. Обратите внимание, что, если переменная возводилась в квадрат в первоначальном уравнении, при решении можно получить два ответа. Mathcad отображает их в виде вектора. Рисунок 20 показывает соответствующий пример.

Рисунок 20: Преобразование выражения для решения уравнения.

Можно также решать неравенство, использующее символы , и . Решения для неравенств будут отображаться в терминах булевых выражений Mathcad. Если имеется более одного решения, Mathcad помещает их в вектор. В Mathcad булево выражение типа x

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Уравнения с одной переменной

    Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

    Содержание:

    Определение уравнения. Корни уравнения

    Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.

    Решить уравнение — это значит найти все его корни или доказать, что их нет.

    Пример 1.

    Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.

    Пример 2.

    Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.

    Пример 3.

    Уравнение не имеет действительных корней.

    Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение имеет два мнимых корня: (см. п. 47). Всюду ниже речь идет только о действительных корнях уравнений.

    Равносильность уравнений

    Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.

    Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения — ни одно из них не имеет корней.

    Уравнения неравносильны, так как первое имеет только один корень 6, тогда как второе имеет два корня: 6 и — 6.

    В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.

    Теорема 1.

    Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.

    Например, уравнение равносильно уравнению

    Теорема 2.

    Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

    Например, уравнение равносильно уравнению (обе части первого уравнения мы умножили на 3).

    Линейные уравнения

    Линейным уравнением с одной переменной х называют уравнение вида

    где — действительные числа; называют коэффициентом при переменной, свободным членом.

    Для линейного уравнения могут представиться три случая:

    1) ; в этом случае корень уравнения равен ;

    2) ; в этом случае уравнение принимает вид , что верно при любом х, т. е. корнем уравнения служит любое действительное число;

    3) ; в этом случае уравнение принимает вид , оно не имеет корней.

    Многие уравнения в результате преобразований сводятся к линейным.

    Пример 1.

    Решить уравнение

    Решение:

    По теореме 1 (см. п. 135), данное уравнение равносильно уравнению . Если разделить обе части этого уравнения на коэффициент при х, то по теореме 2 получим равносильное данному уравнение . Итак, — корень уравнения.

    Пример 2.

    Решение:

    Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим

    Квадратные уравнения

    где — действительные числа, причем , называют квадратным уравнением. Если , то квадратное уравнение называют приведенным, если , то неприведенным. Коэффициенты имеют следующие названия: первый коэффициент, второй коэффициент, с — свободный член. Корни уравнения находят по формуле

    Выражение называют дискриминантом квадратного уравнения (1). Если D О, то уравнение имеет два действительных корня.

    В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.

    Используя обозначение , можно переписать формулу (2) в виде Если , то формулу (2) можно упростить:

    Формула (3) особенно удобна, если — целое число, т. е. коэффициент — четное число.

    Пример 1.

    Решение:

    Здесь . Имеем:

    Так как , то уравнение имеет два корня, которые найдем по формуле (2):

    Итак, — корни заданного уравнения.

    Пример 2.

    Решить уравнение

    Решение:

    Здесь По формуле (3) находим т. е. х = 3 — единственный корень уравнения.

    Пример 3.

    Решить уравнение

    Решение:

    Здесь Так как D 0, откуда х>3, и 5 — х > 0, откуда х 5, тогда как для уравнения (2) областью определения служит вся числовая прямая. Поэтому найденное значение х = 4, являющееся корнем уравнения (2), может оказаться посторонним корнем для уравнения (1). В данном случае именно это и происходит, поскольку х = 4 не принадлежит области определения уравнения (1) (не удовлетворяет неравенству х > 5). Итак, х = 4 — посторонний корень, т. е. заданное уравнение не имеет корней.

    Рациональные уравнения

    Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.

    Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.

    Чтобы решить рациональное уравнение, нужно:

    1) найти общий знаменатель всех имеющихся дробей;

    2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;

    3) решить полученное целое уравнение;

    4) исключить из его корней те, которые обращают в нуль общий знаменатель.

    Пример:

    Решение:

    Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:

    Из уравнения находим (см. п. 137). Осталось проверить, обращают ли найденные корни выражение 2х(2 — х) в нуль, т. е. проверить выполнение условия Замечаем, что 2 не удовлетворяет этому условию, а 4 удовлетворяет. Значит, х = 4 — единственный корень уравнения.

    Решение уравнения р(х) = 0 методом разложения его левой части на множители

    Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени . Предположим, что удалось разложить многочлен на множители:, где — многочлены более низкой степени, чем . Тогда уравнение р(х) = 0 принимает вид . Если — корень уравнения а потому хотя бы одно из чисел равно нулю.

    Значит, — корень хотя бы одного из уравнений

    Верно и обратное: если — корень хотя бы одного из уравнений то — корень уравнения т. е. уравнения р (х) = 0.

    Итак, если , где — многочлены, то вместо уравнения р(х) = 0 нужно решить совокупность уравнений Все найденные корни этих уравнений, и только они, будут корнями уравнения р(х) = 0.

    Пример 1.

    Решить уравнение

    Решение:

    Разложим на множители левую часть уравнения. Имеем откуда

    Значит, либо х + 2 = 0, либо . Из первого уравнения находим х = — 2, второе уравнение не имеет корней. Итак, получили ответ: -2.

    Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть но среди выражений есть выражения более сложного вида, чем многочлены (например, иррациональные, логарифмические и т. д.). Среди корней уравнений могут быть посторонние для уравнения р(х) = 0.

    Пример 2.

    Решить уравнение

    Решение:

    Имеем ; значит, либо , либо .Из уравнения находим х = 0, из уравнения находим .

    Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение . Это посторонний корень.

    Итак, уравнение имеет два корня: 3; 0.

    Решение уравнений методом введения новой переменной

    Суть этого метода поясним на примерах.

    Пример 1.

    Решение:

    Положив , получим уравнение

    откуда находим . Теперь задача сводится к решению совокупности уравнений

    Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.

    Из второго квадратного уравнения находим . Это корни заданного уравнения.

    Пример 2.

    Решение:

    Положим , тогда

    и уравнение примет вид

    Решив это уравнение (см. п. 145), получим

    Но . Значит, нам остается решить совокупность уравнений

    Из первого уравнения находим , ; из второго уравнения получаем Тем самым найдены четыре корня заданного уравнения.

    Биквадратные уравнения

    Биквадратным уравнением называют уравнение вида

    Биквадратное уравнение решается методом введения новой переменной: положив , придем к квадратному уравнению

    Пример:

    Решить уравнение .

    Решение:

    Положив , получим квадратное уравнение , откуда находим . Теперь задача сводится к решению совокупности уравнений Первое уравнение не имеет действительных корней, из второго находим Это — корни заданного биквадратного уравнения.

    Решение задач с помощью составления уравнений

    С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.

    1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.

    2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).

    3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.

    4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.

    Задача 1.

    Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?

    Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить т груза, а на самом деле грузили т груза, что на 0,5 т меньше, чем предполагалось. В результате мы приходим к уравнению

    Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.

    Задача 2.

    Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.

    Решение:

    Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит ч, а время, за которое лодка пройдет обратный путь, составит ч. Так как путь туда и обратно лодка проходит за 6 ч 15 мин, т. е. ч, приходим к уравнению

    решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.

    Задача 3.

    Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.

    Решение:

    Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем

    Решив это уравнение, найдем

    Второй корень не подходит по смыслу задачи.

    Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.

    Задача 4.

    Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?

    Решение:

    Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна , а часть работы, выполняемая вторым рабочим за 1 ч, равна Согласно условию, они, работая вместе, выполнили всю работу за 6 ч. Доля работы, выполненная за 6 ч первым рабочим, есть , а доля работы, выполненная за 6 ч вторым рабочим, есть Так как вместе они выполнили всю работу, т. е. доля выполненной работы равна 1, получаем уравнение

    решив которое, найдем х = 10.

    Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.

    Задача 5.

    Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?

    Решение:

    Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится л кислоты (концентрация раствора). Во второй раз из сосуда вылили х л смеси, в этом количестве смеси содержалось л кислоты. Таким образом, в первый раз было вылито х л кислоты, во второй л кислоты, а всего

    за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению

    Решив это уравнение, найдем два корня: и . Ясно, что значение 90 не удовлетворяет условию задачи.

    Итак, в первый раз было вылито 18 л кислоты.

    Задача 6.

    Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?

    Решение:

    Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было . Так как масса меди и в имевшемся, и в новом сплаве одна и та же, приходим к уравнению

    Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.

    Задача 7.

    Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?

    Решение:

    Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению

    0,05х + 0,4 (140 — х) = 0,3 * 140,

    из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.

    Иррациональные уравнения

    Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения

    Используются два основных метода решения иррациональных уравнений:

    1) метод возведения обеих частей уравнения в одну и ту же степень;

    2) метод введения новых переменных (см. п. 147).

    Метод возведения обеих частей уравнения в одну

    и ту же степень состоит в следующем:

    а) преобразуют заданное иррациональное уравнение к виду

    б) возводят обе части полученного уравнения в п-ю степень:

    в) учитывая, что , получают уравнение

    г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.

    Пример 1.

    Решить уравнение

    Решение:

    Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.

    Проверка:

    Подставив 67 вместо х в данное уравнение, получим , т. е. 2 = 2 — верное равенство.

    Ответ: 67.

    Пример 2.

    Решение:

    Преобразуем уравнение к виду

    и возведем обе части его в квадрат. Получим

    Еще раз возведем обе части уравнения в квадрат:

    откуда

    Проверка:

    1) При х = 5 имеем

    — верное равенство.

    Таким образом, х = 5 является корнем заданного уравнения.

    2) При х = 197 имеем Таким образом, х = 197 — посторонний корень.

    Ответ: 5.

    Пример 3.

    Решение:

    Применим метод введения новой переменной.

    Положим и мы получаем уравнение , откуда находим

    Теперь задача свелась к решению совокупности уравнений

    Возведя обе части уравнения в пятую степень, получим х — 2 = 32, откуда х = 34.

    Уравнение не имеет корней, поскольку под знаком возведения в дробную степень может содержаться только неотрицательное число, а любая степень неотрицательного числа неотрицательна.

    Ответ: 34.

    Показательные уравнения

    Показательное уравнение вида

    где равносильно уравнению f(х) = g(x).

    Имеются два основных метода решения показательных уравнений:

    1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду а затем к виду f(х) = g(x);

    2) метод введения новой переменной.

    Пример 1.

    Решить уравнение

    Решение:

    Данное уравнение равносильно уравнению откуда находим Решив это квадратное уравнение, получим

    Пример 2.

    Решение:

    Приведем все степени к одному основанию . Получим уравнение которое преобразуем к виду Уравнение равносильно уравнению х = 2х — 3, откуда находим х = 3.

    Пример 3.

    Решить уравнение

    Решение:

    Применим метод введения новой переменной. Так как ,то данное уравнение можно переписать в виде

    Введем новую переменную, положив Получим квадратное уравнение с корнями Теперь задача сводится к решению совокупности уравнений

    Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как при любых значениях х.

    Ответ: 2.

    Логарифмические уравнения

    Чтобы решить логарифмическое уравнение вида

    где нужно:

    1) решить уравнение f(x) = g(x);

    2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).

    Имеются два основных метода решения логарифмических уравнений:

    1) метод, заключающийся в преобразовании уравнения к виду затем к виду f(x) = g(x);

    2) метод введения новой переменной.

    Пример 1.

    Решение:

    Перейдем от заданного уравнения к уравнению и решим его. Имеем Проверку найденных значений х выполним с помощью неравенств Число -3 этим неравенствам удовлетворяет, а число 4 — нет. Значит, 4 — посторонний корень.

    Ответ: -3.

    Пример 2.

    Решение:

    Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду

    Из последнего уравнения находим

    Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств

    Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.

    Ответ: -1.

    Пример 3.

    Решение:

    Так как заданное уравнение можно переписать следующим образом:

    Введем новую переменную, положив Получим

    Но ; из уравнения находим х = 4.

    Ответ: 4.

    Примеры решения показательно-логарифмических уравнений

    Пример 1.

    Решение:

    Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение

    равносильное уравнению (1). Далее имеем

    Полагая получим уравнение , откуда Остается решить совокупность уравнений Из этой совокупности получим — корни уравнения (1).

    Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению

    Пример 2.

    (2)

    Решение:

    Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду

    Полагая , получим уравнение корнями которого являются

    Теперь задача сводится к решению совокупности уравнений

    Так как , а -1 0 и мы получаем

    если , то D = 0 и мы получаем , т. е. (поскольку ) .

    Итак, если то действительных корней нет; если = 1, то ; если ,то ; если и , то

    Пример 3.

    При каких значениях параметра уравнение

    имеет два различных отрицательных корня?

    Решение:

    Так как уравнение должно иметь два различных действительных корня его дискриминант должен быть положительным. Имеем

    Значит, должно выполняться неравенство

    По теореме Виета для заданного уравнения имеем

    Так как, по условию, , то и

    В итоге мы приходим к системе неравенств (см. п. 177):

    Из первого неравенства системы находим (см. п. 180, 183) ; из второго ; из третьего . С помощью координатной прямой (рис. 1.107) находим, что либо , либо

    Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:

    Смотрите также дополнительные лекции по предмету «Математика»:

    Присылайте задания в любое время дня и ночи в ➔

    Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

    Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

    Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


    источники:

    http://urok.1sept.ru/articles/417558

    http://natalibrilenova.ru/uravneniya-s-odnoj-peremennoj/