Как решать уравнения по комбинаторики

Конспект урока на тему «Решение комбинаторных уравнений» (10 класс)

Сочетаниями без повторений занимался еще великий Паскаль. Он предложил специальную таблицу значений сочетаний без повторений.

Значения представлены в табл. которая называется треугольником Паскаля.

Этот треугольник удивительно красив своей математической красотой, и в его числах можно при желании отыскать различные закономерности. Его можно представить несколько иначе – в виде [26]: равнобедренного треугольника (рис. 10).

Рис. 10. Треугольник Паскаля

Здесь каждое число, кроме единиц на боковых сторонах, является суммой двух чисел, стоящих над ним. Поэтому:

(приводим к общему знаменателю)

(выносим n ! за скобку в знаменателе)

Из этого соотношения и вытекает эффективный способ рекуррентного вычисления значений биномиальных коэффициентов.

Докажем соотношение 1)

Это может использоваться при вычислениях, например, вместо можно вычислить .

Докажем соотношение 2)

Имеется формула, называемая биномом Ньютона, которая использует выражения числа сочетаний с повторениями

где а, b – действительные или комплексные числа.

Коэффициенты называются биномиальными.

Докажем формулу бинома Ньютона по индукции. Доказательство по индукции предполагает:

1) базис индукции – доказательство того, что формула верна для конкретного n , например, для n =1. В нашем случае мы убедились, что формула верна для n =2,3,4. Убедимся, что она верна и для n =1.

2) индукционный шаг. Предполагая, что формула верна для некоторого n , убеждаются, что тогда она верна и для n +1.

3) при истинности шагов 1 и 2 заключают, что формула верна для любого n .

Приступим к индукционному шагу.

Возьмем выражение и получим из него выражение для n +1. Очевидно, что это можно сделать путем умножения на a + b :

Преобразуем полученное выражение:

Для выполнения индукционного шага необходимо показать, что это выражение равно выражению:

Рассмотрим подвыражение выражения (1): и заменим i на i -1.

Получим , т.е. одинаковые коэффициенты перед выражениями , для числа сочетаний в первом и втором подвыражении выражения (1).Это позволит вынести за скобку. Но тогда в не учтен n -й член подвыражения (суммирование идет до n ): тогда, учитывая его, получаем:

Нетрудно видеть, что можно заменить на , кроме того, мы уже доказали, что , поэтому: , что, очевидно, равно выражению:

По индукции получаем, что формула бинома Ньютона верна для любого n .

С использованием бинома Ньютона докажем следствие №1 о количестве подмножеств множества из n элементов:

Рассмотрим следствие №2: .

На использовании бинома Ньютона основано понятие производящей функции – функции, позволяющей получать комбинаторные числа без вычисления факториала:

. Здесь – функция, производящая биномиальные коэффициенты.

При n =1 получаем 1+ x , т.е. (коэффициент перед 1), (коэффициент перед x ).

При n =2 получаем (1+ x ) 2 =1+2 x + x 2 , т.е. и т.д.

Решение комбинаторных уравнений

В комбинаторике тоже могут решаться уравнения, особенностью которых является то, что неизвестная принадлежит множеству натуральных чисел. Например, уравнения вида , xN , где N – множество натуральных чисел или вида:

При решении комбинаторных уравнений часто необходимо уметь выполнять действия с факториалами типа:

Например, в задаче о сравнении пар записей в базе данных из n записей:

, – что и требовалось доказать.

В комбинаторике рассматриваются и другие типовые комбинаторные комбинации, например, разбиения n -элементного множества на k подмножеств, которые называются блоками разбиения. В информатике вычисления на конечных математических структурах часто называют комбинаторными вычислениями, и они требуют комбинаторного анализа для установления свойств и оценки применимости используемых алгоритмов. На рис. 11 приведен один из возможных вариантов классификации основных комбинаций.

Рис. 11. Основные комбинации

Комбинаторные задачи могут быть решены, например, системой компьютерной математики Matematica (3,4) фирмы Wolfram Research , Inc . – пакет расширения «Дискретная математика» ( DiscreteMath ) – комбинаторика и ее функции ( Combinatorica , CombinatorialFunctions ): функции перестановок и сочетаний и др.

Пример 1. Решить уравнение

и представим правую часть в виде

,

откуда следует

x + 3 = 11 и x = 8.

Пример 2. Решить уравнение

Решение. По условию x – целое число, удовлетворяющее неравенством Перепишем уравнение в виде

откуда, после упрощений, получаем

> 4

Пример 3. Решить систему уравнений

Решение. Из второго уравнение находим

Решая последнее уравнение, получаем Но так как не пригодно к решению уравнения, значит x = 18.

Подставляя x = 18 в первое уравнение системы, найдем

18 – y = y + 2, y = 8.

Итак, x = 18, y = 8.

Пример 4. Решить систему уравнений

Решение. Перепишем систему уравнений в виде

или, после упрощений получим

откуда следует x = 2, y = 6.

Решите уравнение (22–25) .

1)=42;

ОДЗ: хN; x > 2

= 42

=-6( исключить – не входит в ОДЗ); =7

=56х;

ОДЗ: хN; x > 3

=

(

((

или -3

1 =0(исключить) или х 2 =-6 (исключить); х 3 =9 (входит в ОДЗ).

3)=30;

ОДЗ: хN; x+1 > 2; х > 1

=

=-6( исключить – не входит в ОДЗ); =5.

4) 5=;

ОДЗ: х

; =

=

=

(20(х-2)-(х+1)(х+2))х

(20х-40-х 2 +2х+х+2)=0 или х=0 или х-1=0

х 2 +3х-20х+42=0 х 1 =0 х 2 =1

х 2 -17х+42=0 корни 0 и 1 не входят в ОДЗ

= 21 ОДЗ: хN; x-3 > 2 ; x > 3

=

— 7х + 12 – 42 = 0

— 7х – 30 = 0

х 1 =10 х 2 = — 3 (не входит в ОДЗ)

2) ; ОДЗ: хN; x > 3

=

=

4х(х-2)(х-1) = 6

х(4х 2 – 12х+8-30х+90)=0

х=0 или 4х 2 – 42х + 98 = 0

2х 2 – 21х + 49 = 0

= 15(х-1) ОДЗ: хN; x > 3

= 15(х-1)

= (х-1)х х 1 = 0 или х 2 = 1 — не входят в ОДЗ

= ОДЗ: хN; x > 4

=

4(х-2)! = 24

х 1 =12; х 2 = — 7(не входит в ОДЗ)

= 43 ОДЗ: хN; x > 5

= 43

х 1 =10; х 2 = 3 (не входит в ОДЗ)

= 89 ОДЗ: хN; x > 7

х 2 – 11х – 60 = 0

х 1 =15; х 2 = — 4(не входит в ОДЗ)

+ = 162 ОДЗ: хN; x > 1

= 162

= 162

2

24х + х 2 + 7х + 12 – 324 = 0

х 2 + 31х – 312 = 0

х 1 =8; х 2 = — 39(не входит в ОДЗ)

=

ОДЗ: x > 4

=

=

(х-2)(х-1)х = 0 или (х-3)-45 = 0

х 1 =2; х 2 = 1 х 3 =0 — не входят в ОДЗ х 4 = 48

= 42 ОДЗ: хN; x > 4

= 12

= 12 х 2 – х – 12 = 0 х 1 =4; х 2 = — 3(не входит в ОДЗ) Ответ: 4.

= 90 ОДЗ:

= 90

х 1 =10; х 2 = — 9(не входит в ОДЗ)

= 132 ОДЗ:

= 132

= 132

x 2 +3 x +2–132 = 0

х 1 =10; х 2 = — 13(не входит в ОДЗ)

= 110 ОДЗ:

= 110

= 110

x 2 +3 x +2– 110 = 0

x 2 +3 x – 108 = 0

х 1 =9; х 2 = — 12(не входит в ОДЗ)

ОДЗ:

решаем методом сложения — 5у = -30; у = 6

ОДЗ: ; у

(х-3)(х-2)(х-1) = 3

4)

Сколько двузначных чисел можно составить из цифр 1. 3, 5, 8, 9 так, чтобы в каждом числе не было одинаковых цифр?

Из 6 открыток надо выбрать 3. Сколькими способами это можно сделать?

Как решать уравнения по комбинаторики

Школьный курс комбинаторики обычно имеет дело с задачами выбора и расположения элементов некоторого, обычно конечного, множества, согласно неких правил.

Для формулирования и решения задач по комбинаторике используют следующие конфигурации: перестановки, размещения, сочетания.

Множество называется упорядоченным, если каждому элементу этого множества поставлено в соответствие некоторое число (номер элемента) от 1 до n, где n — число элементов множества.

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Перестановкой из n элементов называется такой набор элементов множества, которые отличаются от исходного лишь порядком элементов. Обычно перестановка обозначается как P n и рассчитывается по формуле:

Найти число перестановок множества, состоящего из трех элементов: A, B, C.

Согласно формуле, количество перестановок будет равно 3! = 6.

Действительно, это наборы (ABC),(ACB),(BAC),(BCA),(CAB),(CBA).

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Размещением из n элементов по k будет называться упорядоченное подмножество из k не повторяющихся элементов выбранные из множества, состоящего изn элементов. Обычно перестановка обозначается как A n k и рассчитывается по формуле:

A n k =n!

Найти число размещений множества, состоящего из четырех элементов: A, B, C, D по два, т.е. сколько различных размещений по два элемента можно составить из указанного множества.

Согласно формуле, количество размещений будет равно 4! / (4-2)! = 24 / 2 = 12.

Действительно, это наборы (AB),(BA),(AC),(CA),(AD),(DA),(BC),(CB),(BD),(DB),(CD),(DC).

Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Сочетанием из n элементов по k будет называться подмножество из k не повторяющихся элементов выбранные из множества, состоящего из n элементов. Подмножества, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений. Обычно сочетание обозначается как С n k и рассчитывается по формуле:

С n k =n!

Найти число сочетаний множества, состоящего из четырех элементов: A, B, C, D по два.

Согласно формуле, количество сочетаний будет равно 4! / 2!(4-2)! = 24 / 4 = 6.

Действительно, это наборы (AB),(AC),(AD),(BC),(BD),(CD).

Сочетание играет важную роль в математике. В частности, он используется в биноме Ньютона.

Бином Ньютона — это отношение, позволяющая представить выражение (a + b) n (nZ + ) в виде многочлена, а именно:

С помощью следующей таблицы можно определить значения биномиальных коэффициентов для любой степени. Строится он следующим образом — любое число образуется суммой рядом стоящих чисел над ним. Именно потому эта таблица имеет название треугольник Паскаля.

Решение комбинаторных уравнений

В комбинаторике тоже могут решаться уравнения, особенностью которых является то, что неизвестная принадлежит множеству натуральных чисел. Например, уравнения вида , xÎN, где N – множество натуральных чисел или вида:

, xÎN (решите!).

При решении комбинаторных уравнений часто необходимо уметь выполнять действия с факториалами типа:

,

.

Например, в задаче о сравнении пар записей в базе данных из n записей:

, – что и требовалось доказать.

В комбинаторике рассматриваются и другие типовые комбинаторные комбинации, например, разбиения n-элементного множества на k подмножеств, которые называются блоками разбиения. В информатике вычисления на конечных математических структурах часто называют комбинаторными вычислениями, и они требуют комбинаторного анализа для установления свойств и оценки применимости используемых алгоритмов. На рис. 11 приведен один из возможных вариантов классификации основных комбинаций.

Рис. 11. Основные комбинации

Комбинаторные задачи могут быть решены, например, системой компьютерной математики Matematica (3,4) фирмы Wolfram Research,Inc. –пакет расширения «Дискретная математика» (DiscreteMath) – комбинаторика и ее функции (Combinatorica, CombinatorialFunctions): функции перестановок и сочетаний и др.

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ГРАФОВ

Способы задания графов

Совокупность множества М с заданным на нем бинарным отношением ТÌМ 2 [9] называется графом

где М – носитель графа – множество вершин, изображаемых точками, Т – сигнатура графа – множество линий, обозначающих отношения и называемых ребрами.

Между элементами М и Т определено отношение инцидентности, т.е. связи между двумя элементами множества М через один элемент множества Т. Примеры графов: отношения отцовства и материнства на множестве людей, отношения подчиненности, карты дорог местности, электрические схемы соединений приборов и т.д.

Рис. 12. Пример графа «звезда»

Множество линий-ребер в Т задается обозначением пары (i,j), где i,j – инцидентные вершины, отношение Т – «быть связанным».

Теорию графов начали разрабатывать для решения некоторых задач о геометрических конфигурациях, состоящих из точек и линий. В этих задачах несущественно, соединены ли точки конфигурации отрезками прямых или они криволинейны, какова длина линий и другие геометрические характеристики конфигурации. Важно лишь, что каждая линия соединяет какие-либо две из заданных точек [24].

Первые серьезные результаты теории графов связаны с решением задач построения электрических цепей (Г. Кирхгоф) и подсчета числа химических соединений с различными типами молекулярных связей (А. Кэли). Изобразите в виде графа молекулу

В 30-е годы ХХ века благодаря трудам Д. Кенига [19] теория графов стала развиваться как самостоятельный раздел математики.

Широкое развитие теория графов получила с 50-х годов ХХ века в связи с появлением такой науки, как кибернетика. Графы применяют при анализе функционирования систем. С отдельными компонентами изучаемой системы удобно связывать вершины графа, а с парами взаимодействующих компонент – его ребра. Такой граф называют структурным графом системы.

В некоторых задачах существенно направление ребер графа. Направленные ребра называют дугами, а содержащий их граф – ориентированным (орграфом). Таковым графом может быть изображена диаграмма Хассе. Соответственно граф с неориентированными ребрами называется неориентированным.

Множество ребер может быть пусто. Если же множество вершин пусто, то пусто и множество ребер. Такой граф называется пустым. Линии, изображающие ребра, могут пересекаться на изображении графа, но точки их пересечений не являются вершинами. Различные ребра могут быть инцидентны одной и той же паре вершин, в этом случае они называются кратными. Граф, содержащий кратные ребра, называют мультиграфом (псевдографом). Ребро (дуга) может соединять некоторую вершину саму с собой, такое ребро (дуга) называется петлей. Будем рассматривать конечные графы, содержащие конечные множества вершин и ребер (дуг).

Рассмотрим предложенную фон Нейманом архитектуру ЭВМ, которая состоит из множества устройств М=<а,b,c,d,e>, где а – устройство ввода, b – арифметическое устройство (процессор), с – устройство управления, d – запоминающее устройство, е – устройство вывода 10.

Информационный обмен между этими устройствами задается графом (рис. 13).

Рис. 13. Граф, описывающий архитектуру

фон Неймановской ЭВМ

Вершины графа на рис. 13 для удобства изображены кружками, а не точками, как на рис. 11.

Граф можно задать так называемой матрицей смежности, каждой i-ой строке (j-му столбцу) которой однозначно сопоставляют элемент множества М, между которыми выполняется отношение смежности. Две вершины, инцидентные одному ребру, смежны. Два ребра, инцидентные одной вершине, тоже смежны. Тогда каждая клетка bij взаимно однозначно соответствует элементам множества М×М=М 2 . Клетку bij, которая соответствует элементу, принадлежащему бинарному отношению ТÌМ 2 , отмечают, например, единицей, а в остальные клетки записывают нули.

Рассмотрим матрицу смежности В для графа, изображенного на рис. 13. Устройства i,j находятся в отношении Т, если из устройства i информация поступает в устройство j.

Граф можно задать и с использованием перечисления его дуг, как это сделано на рис. 13:

Граф можно задать в виде так называемого фактор-множества, представленного парами «элемент множества М – подмножество М, представляющее собой окрестность единичного радиуса этого элемента»:

Ориентированный граф может быть задан и матрицей инцидентности А размерностью n×m: A=||aij||, где n=|M|, m=|Т|, у которой

если вершина ai является концом дуги tj;

если вершина ai является началом дуги tj;

если вершина ai не инцидентна дуге tj,

, .

Так, для ориентированного графа (рис. 14) матрица инцидентности имеет вид:

Рис. 14. Некоторый ориентированный граф

В описанном виде матрицы инцидентности применимы только к графам без петель, в случае наличия которых матрицу надо разбить на две полуматрицы: положительную и отрицательную. Ориентированный граф также может быть задан матрицей смежности.

Для графов с кратными ребрами в матрице смежности указывают кратность ребер, например, для графа, изображенного на рис. 15, матрица смежности представляется в виде:

Такой граф называют мультиграфом.

Рис. 15. Некоторый ориентированный мультиграф

Граф называется нагруженным, если каждому ребру (дуге) поставлено в соответствие некоторое действительное число (длина дуги, вес дуги, стоимость дуги и т.д.).

Представим в виде графа некоторые бинарные отношения [9]. Отношение Т в множестве М рефлексивно, как мы уже знаем, если для каждого элемента mÎМ справедливо (m,m)ÎТ. На графе это изображается петлей (рис. 16а). На матрице смежности графа с рефлексивным отношением все элементы, лежащие на главной диагонали отмечены единицами.

Отношение во множестве М называется симметричным, если из (mi,mj)ÎТ следует (mi,mj)ÎМ, mi¹mj (рис. 16б). Матрица смежности симметричного отношения симметрична относительно главной диагонали.

В графе, задающем транзитивное отношение Т, для всякой пары дуг таких, что конец первой совпадает с началом второй, существует транзитивно замыкающая дуга, имеющая общее начало с первой и общий конец со второй.

Рис. 16. Изображения бинарных отношений в виде графа

а) рефлексивное отношение, б) симметричное отношение,

в) транзитивное отношение

Характеристики графов

Подграфом GА графа G= называется граф, в который входит лишь часть вершин графа G, образующих множество А, вместе с ребрами (дугами), их соединяющими.

Так, карта шоссейных дорог Пермской области является подграфом графа «Карта шоссейных дорог Российской Федерации» [18].

Частичным графом GD по отношению к графу G называется граф, содержащий только часть ребер (дуг) графа G.

Так, карта главных дорог России – подграф карты шоссейных дорог России [18].

Если две вершины соединены ребром, то говорят, что каждая вершина инцидентна этому ребру, а соответствующие вершины – смежны (две вершины, инцидентные одному ребру – смежны). Два ребра, инцидентные одной вершине, также смежны.

Маршрут – чередующаяся последовательность вершин и ребер, в которой два соседних элемента инцидентны [26].

Если начальная вершина маршрута равна конечной, то маршрут замкнут, иначе открыт.

Если все ребра различны, то маршрут называется цепью.

Если все вершины (а, значит и ребра) различны, то маршрут называется простой цепью.

Замкнутая цепь – цикл.

Граф без циклов называется ациклическим.

В ориентированном графе цепь называется путем, а цикл – контуром.

Степенью вершины х, обозначаемой deg(х), называют число ребер, инцидентных ей. Если degх=1, то вершина х тупиковая, если degх=0, то вершина изолированная.

Если G – неориентированный граф с n вершинами и m ребрами, а degj – степени j-й вершины, то сумма степеней вершин равна удвоенному количеству ребер:

.

Это следует из того, что каждое ребро добавляет единицу к степени каждой из двух вершин, которое оно соединяет, т.е. добавляет 2 к сумме уже имеющихся вершин. Следствием этого факта является то, что в каждом графе число вершин нечетной степени четно. Для ориентированного графа вводятся понятия полустепень исхода и полустепень захода.

Деревья. Лес.

Граф связен, если любые две его вершины можно соединить цепью. Если граф не связен, то его можно разбить на отдельные связные подграфы, которые называются компонентами связности.

Связный граф, не имеющий циклов (ациклический), называется деревом (рис. 17).

Рис. 17. Граф-дерево

Деревом может быть задано отношение подчинения в трудовом коллективе, в государстве.

Простейшее дерево состоит из двух вершин, соединенных ребром. Каждый раз, когда добавляется еще одно ребро, в конце его прибавляется также и вершина. Следовательно, дерево с n вершинами имеет n-1 ребро.

В теории графов доказывается, что число различных деревьев, которые можно построить на m вершинах, равно m m -2 . Много деревьев – это лес.

Цикломатическое число.

Пусть G – неориентированный связный граф, имеющий n вершин и m ребер.

Цикломатическим числом связного графа G с n вершинами и m ребрами называется число

Это число имеет интересный физический смысл: оно равно наибольшему числу независимых циклов в графе [18]. При расчете электрических цепей цикломатическое число используется для определения числа независимых контуров.

Рассмотрим примеры подсчета числа независимых циклов.

В графе, состоящем из одной вершины и одного ребра, один цикл (рис. 18а).

В графе, состоящем из одной вершины и трех ребер, три цикла (рис. 18б).

В графе, состоящем из двух вершин и двух ребер, один цикл (рис. 18в).

В графе, состоящем из двух вершин и пяти ребер, четыре цикла (рис. 18г).

В графе, состоящем из трех вершин и трех ребер, один цикл (рис. 18д).

В графе, состоящем из трех вершин и четырех ребер, два цикла (рис. 18е).

В графе, состоящем из четырех вершин и четырех ребер, один цикл (рис. 18ж).

В графе, состоящем из четырех вершин и пяти ребер, два цикла (рис. 18з).

В графе, состоящем из четырех вершин и шести ребер, три цикла (рис. 18и).

Цикломатическое число дерева равно нулю.

Рис. 18. Примеры циклов в графах

Плоские (планарные) графы.

Граф называется плоским (планарным), если он может быть изображен на плоскости так, что все пересечения ребер являются вершинами (без пересечения рёбер).

Аналогично можно ввести понятие объемного, т.е. трехмерного графа и т.д.

Хроматическое число графа.

Граф G называют р-хроматическим, где р – натуральное число, если его вершины можно раскрасить р различными цветами так, чтобы никакие две смежные вершины не были раскрашены одинаково. Наименьшее число р, при котором граф является р-хроматическим, называют хроматическим числом графа и обозначают l(G). Если l(G)=2, то граф называют бихроматическим. Необходимым и достаточным условием бихроматичности является отсутствие в графе циклов нечетной длины.

Граф на рис. 19а – бихроматический, его вершины «раскрашены» двумя «цветами», обозначенными 0,1.

Рис. 19. Примеры раскраски графов

Граф на рис. 19б можно «раскрасить» тремя цветами, например, черным (ч), красным (к) и белым (б).

Изоморфизм графов.

Как мы убедились, граф может быть задан различными способами. Он может быть изображен на чертеже, задан матрицей инцидентности, списком ребер или матрицей смежности, фактор-множеством и т.д. Вид чертежа зависит от формы линий и взаимного расположения вершин [24]. Иногда не так легко понять, одинаково ли графы, изображенные разными чертежами. Вид матриц и списка ребер зависит от нумерации вершин и ребер графа. Строго говоря, граф считается полностью заданным, если нумерация его вершин зафиксирована; графы, отличающиеся только нумерацией вершин, называются изоморфными.

Например, графы, изображенные на рис. 20, изоморфны [24].

Рис. 20. Изоморфные графы а) и б), отличающиеся

только перенумерацией вершин 5®1, 1®5

Если граф ориентированный, то направление дуг в изоморфных графах должно совпадать.

Чтобы узнать, представляют ли две матрицы смежности изоморфные графы, можно произвести всевозможные одинаковые перестановки строк и столбцов.

Если после одной из этих перестановок возникнет матрица, совпадающая с заданной, то сравниваемые графы изоморфны. Для этого требуется максимум n! перестановок, где n – число вершин графа.

Иногда для определения изоморфности определяют параметры обоих графов: число вершин, число ребер, число компонент связности, последовательность степеней вершин в убывающем порядке.

Если какие-то из этих параметров различны, то эти графы различны. Однако если все параметры у двух графов совпали, это не гарантирует изоморфности, то есть это необходимое, но не достаточное условие [24].

Так, на рис. 21 приведены два графа, у которых эти параметры совпадают, и, тем не менее, они различны [24].

Рис. 21. Пример неизоморфных графов а) и б)

На рис. 22 приведен граф, изоморфный графу «пятиконечная звезда» (см. рис. 12).

Рис. 22. Граф, изоморфный графу «пятиконечная звезда»

Двудольный граф (биграф, чётный граф) – граф, который может быть представлен двумя непересекающимися подмножествами вершин, причем все ребра соединяют вершины из разных подмножеств.

Псевдограф содержит и ребра, и дуги.

Тривиальный граф содержит только одну вершину.

Иногда граф задают в виде множества образов Г или прообразов Г -1 .

Множеством внутренней устойчивости графа называется подмножество таких его вершин, которые несмежны между собой.

Множеством внешней устойчивости графа называют такое подмножество его вершин, если любая вершина, не принадлежащая этому подмножеству, смежна с вершинами из этого подмножества.

Множество внешней устойчивости, содержащее наименьшее число вершин, называют наименьшим внешне устойчивым множеством, а число элементов этого множества – число внешней устойчивости графа.

Операции над графами.

Полный граф – это граф, в котором все вершины связаны друг с другом. Очевидно, что это аналог универсума в теории множеств. Поэтому, можно ввести операцию дополнения графа до полного, например, в матрице смежности неориентированного графа заменяются нули на единицы и наоборот, исключая главную диагональ.

Вводятся также операции объединения графов, когда объединяются множества вершин и заданных на них отношений; соединение графов, когда находится пересечение указанных множеств.

Используются и такие операции, как удаление вершины, удаление ребра, добавление вершины, добавление ребра.

В настоящее время в ЭВМ графы чаще всего задаются списками смежности и массивом указателей на эти списки [26].

Задачи на графах могут быть решены, например, системой компьютерной математики Matematica (3,4) фирмы Wolfram Research,Inc. – пакет расширения «Дискретная математика» (DiscreteMath) – представление графов, создание графов, свойства графов, алгоритмическая теория графов.


источники:

http://www.sites.google.com/site/usemath4urself/kombinatorika-binom-nutona

http://lektsii.org/17-55581.html