Как решать уравнения с логарифмами 10

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению \(f(x)=g(x)\) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида \(\log_a f(x)=\log_a g(x)\)

Неравенства \( \begin f(x)\gt 0\\ g(x)\gt 0 \end \) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для \(x\) в явном виде;
2) решить уравнение \(f(x)=g(x)\);
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения \(f(x)\) и \(g(x)\) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение \(f(x)=g(x)\);
2) провести подстановку: полученные корни подставить в выражения для \(f(x)\) и \(g(x)\), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение \(\lg(2x+3)+\lg(x+4)=\lg(1-2x)\)
Найдем ОДЗ в явном виде:
\( \begin 2x+3\gt 0\\ x+4\gt 0\\ 1-2x\gt 0 \end \Rightarrow \begin x\gt-\frac32\\ x\gt-4\\ x\lt\frac12 \end \Rightarrow -\frac32\lt x\lt\frac12\Rightarrow x\in\left(-\frac32;\frac12\right) \)
Решаем уравнение:
\(\lg\left((2x+3)(x+4)\right)=\lg(1-2x)\)
\((2x+3)(x+4)=1-2x\)
\(2x^2+11x+12-1+2x=0\)
\(2x^2+13x+11=0\)
\((2x+11)(x+1)=0\)
\( \left[ \begin x_1=-5,5\\ x_2=-1 \end \right. \)
Корень \(x_1=-5,5\notin \left(-\frac32;\frac12\right),\) т.е. не подходит.
Корень \(x_2=-1\in \left(-\frac32;\frac12\right)\) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида \(\log_ f(x)=\log_ g(x)\)

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение \(\log_(x^2-4)=\log_(2-x)\)
Найдем ОДЗ в явном виде:
\( \begin x^2-4\gt 0\\ 2-x\gt 0\\ x+5\gt 0\\ x+5\ne 1 \end \Rightarrow \begin x\lt -2\cup x\gt 2\\ x\lt 2\\ x\gt -5\\ x\ne -4 \end \Rightarrow \begin -5\lt x\lt -2\\ x\ne -4 \end \Rightarrow x\in (-5;-4)\cup(-4;-2) \)
Решаем уравнение:
\(x^2-4=2-x\)
\(x^2+x-6=0\)
\((x+3)(x-2)=0\)
\( \left[ \begin x_1=-3\\ x_2=2 — \ \text <не подходит>\end \right. \)
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение \(\log_<2>(x+1)=\log_<4>(x+3)\)
Основания \(2\ne 4\), и нельзя сразу написать \(x+1=x+3\).
Нужно привести к одному основанию, преобразовав левую часть:
\(\log_2(x+1)=\log_<2^2>(x+1)^2=\log_4(x+1)^2\)
Тогда исходное уравнение примет вид: \(\log_4(x+1)^2=\log_4(x+3)\)
И теперь: \((x+1)^2=x+3\)
\(x^2+x-2=0\)
\((x+2)(x-1)=0\)
\( \left[ \begin x_1=-2\\ x_2=1 \end \right. \)
Что касается ОДЗ, то её нужно искать для исходного уравнения:
\( \begin x+1\gt 0\\ x+3\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt -3 \end \Rightarrow x\gt -1 \)
Корень \(x_1=-2\lt -1\) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) \( \log_2(x+1)-\log_2(x-1)=1 \)
ОДЗ: \( \begin x+1\gt 0\\ x-1\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt 1 \end \Rightarrow x\gt 1 \)
\(\log_2\left((x+1)(x-1)\right)=\log_22\)
\(x^2-1=2\Rightarrow x^2 =3\)
\( \left[ \begin x_1=-\sqrt<3>\lt 2 — \text<не подходит>\\ x_2=\sqrt <3>\end \right. \)
Ответ: \(\sqrt<3>\)

б) \( 2\log_5(x-1)=\log_5(1,5x+1) \)
ОДЗ: \( \begin x-1\gt 0\\ 1,5x+1\gt 0 \end \Rightarrow \begin x\gt 1\\ x\gt-\frac23 \end \Rightarrow x\gt 1 \)
Преобразуем: \(2\log_5(x-1)=\log_5(x-1)^2\)
Получаем: \(\log_5(x-1)^2=\log_5(1,5x+1)\)
\((x-1)^2=1,5x+1\)
\(x^2-2x+1-1,5x-1=0\Rightarrow x^2-3,5x=0\Rightarrow x(x-3,5)=0\)
\( \left[ \begin x_1=0\lt 1 — \text<не подходит>\\ x_2=3,5 \end \right. \)
Ответ: 3,5

в) \( \log_3(3-x)+\log_3(4-x)=1+2\log_3 2 \)
ОДЗ: \( \begin 3-x\gt 0\\ 4-x\gt 0 \end \Rightarrow \begin x\lt 3\\ x\lt 4 \end \Rightarrow x\lt 3 \)
Преобразуем: \(1+2\log_3 2=\log_3 3+\log_3 2^2=\log_3(3\cdot 4)=\log_3 12\)
Получаем: \(\log_3\left((3-x)(4-x)\right)=\log_3 12\)
\((3-x)(4-x)=12\Rightarrow 12-7x+x^2=12\Rightarrow x(x-7)=0\)
\( \left[ \begin x_1=0\\ x_2=7\gt 3 — \text <не подходит>\end \right. \)
Ответ: 0

г) \( \log_2^2x+\log_2 x^2+1=0 \)
ОДЗ: \(x\gt 0\)
\(\log_2x^2=2\log_2x\)
Получаем: \(\log_2^2x+2\log_2x+1=0\)
Замена: \(t=\log_2 x\)
\(t^2+2t+1=0\Rightarrow(t+1)^2=0\Rightarrow t=-1\)
Возвращаемся к исходной переменной: \(\log_2x=-1\)
\(x=2^<-1>=\frac12\)
Ответ: \(\frac12\)

д) \( x^<\lg x>=10 \)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg ⁡x\). Тогда \(x=10^t\)
Подставляем:
\((10^t)^t=10\Rightarrow 10^=10^1\Rightarrow t^2=1\Rightarrow t=\pm 1\)
Возвращаемся к исходной переменной:
\( \left[ \begin \lg x=-1\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-1>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,1\\ x_2=10 \end \right. \)
Оба корня подходят.
Ответ:

e) \( \sqrt\cdot \log_5(x+3)=0 \)
ОДЗ: \( \begin x\geq 0\\ x+3\gt 0 \end \Rightarrow \begin x\geq 0\\ x\gt -3 \end \Rightarrow x\geq 0 \)
\( \left[ \begin \sqrt=0\\ \log_5(x+3)=0 \end \right. \Rightarrow \left[ \begin x=0\\ x+3=5^0=1 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=-2\lt 0 — \text <не подходит>\end \right. \)
Ответ: 0

ж) \( \log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(x+1) \)
ОДЗ: \( \begin x\gt 0\\ x+1\gt 0\\ 5x-2\gt 0\\ 5x-2\ne 1 \end \Rightarrow \begin x\gt 0\\ x\gt -1\\ x\gt\frac25\\ x\ne\frac35 \end \Rightarrow \begin x\gt\frac25\\ x\ne\frac35 \end \)
Преобразуем: \(\log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(2x^2)\)
Подставляем: \(\log_<5x-2>(2x^2)=\log_<5x-2>(x+1)\)
\( 2x^2=x+1\Rightarrow 2x^2-x-1=0\Rightarrow (2x+1)(x-1)=0 \Rightarrow \left[ \begin x_1=-\frac12 — \text<не подходит>\\ x_2=1 \end \right. \)
Ответ: 1

Пример 2*. Решите уравнения:
a) \( \log_4\log_2\log_3(2x-1)=\frac12 \)
ОДЗ: \( \begin 2x-1\gt 0\\ \log_3(2x-1)\gt 0\\ \log_2\log_3(2x-1)\gt 0 \end \Rightarrow \begin x\gt\frac12\\ 2x-1\gt 3^0\\ \log_3(2x-1)\gt 2^0 \end \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ 2x-1\gt 3^1 \end \Rightarrow \)
\( \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ x\gt 2 \end \Rightarrow x\gt 2 \)
Решаем:
\(\log_2\log_3(2x-1)=4^<1/2>=2\)
\(\log_3(2x-1)=2^2=4\)
\(2x-1=3^4=81\)
\(2x=82\)
\(x=41\)
Ответ: 41

б) \( \log_2(9-2^x)=25^<\log_5\sqrt<3-x>> \)
ОДЗ: \( \begin 9-2x\gt 0\\ 3-x\gt 0 \end \Rightarrow \begin 2^x\lt 9\\ x\lt 3 \end \Rightarrow \begin x\lt\log_2 9\\ x\lt 3 \end \Rightarrow x\lt 3 \)
Преобразуем: \(25^<\log_5\sqrt<3-x>>=25^<\log_<5^2>(\sqrt<3-x>)^2>=25^<\log_<25>(3-x)>=3-x\)
Подставляем: \(\log_2(9-2^x)=3-x\)
\(9-2^x=2^<3-x>\)
\(9-2^x-\frac<8><2^x>=0\)
Замена: \(t=2^x\gt 0\)
\( 9-t-\frac8t=0\Rightarrow \frac<-t^2+9t-8>=0\Rightarrow \begin t^2-9t+8\gt 0\\ t\ne 0 \end \Rightarrow \begin (t-1)(t-8)=0\\ t\ne 0 \end \Rightarrow \left[ \begin t_1=1\\ t_2=8 \end \right. \)
Возвращаемся к исходной переменной:
\( \left[ \begin 2^x=1\\ 2^x=8 \end \right. \Rightarrow \left[ \begin 2^x=2^0\\ 2^x=2^3 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=3 \end \right. \)
По ОДЗ \(x\lt 3\), второй корень не подходит.
Ответ: 0

в) \( \lg\sqrt+\lg\sqrt<2x-3>+1=\lg 30 \)
ОДЗ: \( \begin x-5\gt 0\\ 2x-3\gt 0 \end \Rightarrow \begin x\gt 5\\ x\gt\frac32 \end \Rightarrow x\gt 5 \)
Преобразуем: \(\lg 30-1=\lg 30-\lg 10=\lg\frac<30><10>=\lg 3\)
Подставляем: \(\lg\sqrt+\lg\sqrt<2x-3>=\lg 3\)
\(\frac12\lg(x-5)+\frac12\lg(2x-3)=\lg 3\ |\cdot 2\)
\(\lg(x-4)+\lg(2x-3)=2\lg 3\)
\(\lg\left((x-5)(2x-3)\right)=\lg 3^2\)
\((x-5)(2x-3)=9\Rightarrow 2x^2-13x+15-9=0 \Rightarrow 2x^2-13x+6=0\)
\( (2x-1)(x-6)=0\Rightarrow \left[ \begin x_1=\frac12\lt 5 — \ \text<не подходит>\\ x_2=6 \end \right. \)
Ответ: 6

г) \( \frac<1><\lg x>+\frac<1><\lg 10x>+\frac<3><\lg 100x>=0 \)
ОДЗ: \( \begin x\gt 0\\ \lg x\ne 0\\ \lg 10x\ne 0\\ \lg 100x\ne 0 \end \Rightarrow \begin x\gt 0\\ x\ne 1\\ 10x\ne 1\\ 100x\ne 1 \end \Rightarrow \begin x\gt 0\\ x\ne\left\<\frac<1><100>;\frac<1><10>;1\right\> \end \)
Преобразуем: \(\lg 10x=\lg 10+\lg x=1+\lg 10\)
\(\lg 100x=\lg 100+\lg x=2+\lg x\)
Подставляем: \(\frac<1><\lg x>+\frac<1><1+\lg x>+\frac<3><2+\lg x>=0\)
Замена: \(t=\lg x\)
\begin \frac1t+\frac<1><1+t>+\frac<3><2+t>=0\Rightarrow \frac1t+\frac<1><1+t>=-\frac<3><2+t>\Rightarrow \frac<1+t+t>=-\frac<3><2+t>\Rightarrow (1+2t)(2+t)=(1+t)\\ 2_5t+2t^2=-3t-3t^2\Rightarrow 5t^2+8t+2=0\\ D=8^2-4\cdot 5\cdot 2=24,\ \ t=\frac<-8\pm 2\sqrt<6>><10>=\frac<-4\pm \sqrt<6>> <5>\end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=\frac<-4- \sqrt<6>><5>\\ \lg x=\frac<-4+ \sqrt<6>> <5>\end \right. \Rightarrow \left[ \begin x=10\frac<-4- \sqrt<6>><5>\\ x=10\frac<-4+ \sqrt<6>> <5>\end \right. $$ Оба корня подходят.
Ответ: \(\left\<10\frac<-4\pm\sqrt<6>><5>\right\>\)

e) \( x^<\frac<\lg x+7><4>>=10^ <\lg x+1>\)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg x.\) Тогда \(x=10^t\)
Подставляем: \begin (10^t)^<\frac<4>>=10^\\ \frac<4>=t+1\Rightarrow t(t+7)=4(t+1)\Rightarrow t^2+7t-4t-4=0\\ t^2+3t-4=0\Rightarrow (t+4)(t-1)=0\Rightarrow \left[ \begin t_1=-4\\ t_2=1 \end \right. \end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=-4\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-4>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,0001\\ x_2=10 \end \right. $$ Оба корня подходят.
Ответ: \(\left\<0,0001;\ 10\right\>\)

ж) \( 4^<\log_3(1-x)>=(2x^2+2x+5)^ <\log_3 2>\)
ОДЗ: \( \begin 1-x\gt 0\\ 2x^2+2x+5\gt 0 \end \Rightarrow \begin x\lt 1\\ D\lt 0,\ x\in\mathbb \end \Rightarrow x\lt 1 \)
По условию: \begin \log_3(1-x)=\log_4\left((2x^2+2x+5)^<\log_32>\right)\\ \log_3(1-x)=\log_32\cdot\log_4(2x^2+2x+5) \end Перейдем к другому основанию: $$ \frac<\lg(1-x)><\lg 3>=\frac<\lg 2><\lg 3>\cdot\frac<\lg(2x^2+2x+5)><\lg 4>\ |\cdot\ \lg 3 $$ \(\frac<\lg 2><\lg 4>=\frac<\lg 2><\lg 2^2>=\frac<\lg 2><2\lg 2>=\frac12\) \begin \lg(1-x)=\frac12\cdot\lg(2x^2+2x+5)\ |\cdot 2\\ 2\lg(1-x)=\lg(2x^2+2x+5)\\ \lg(1-x)^2=\lg(2x^2+2x+5)\\ (1-x)^2=2x^2+2x+5\\ 1-2x+x^2=2x^2+2x+5\\ x^2+4x+4=0\\ (x+2)^2=0\\ x=-2 \end Ответ: -2

Пример 3. Решите систему уравнений:
a) \( \begin \lg x+\lg y=\lg 2\\ x^2+y^2=5 \end \)
ОДЗ: \( \begin x\gt 0\\ y\gt 0 \end \)
Из первого уравнения: \(\lg(xy)=\lg 2\Rightarrow xy=2\)
Получаем: \( \begin xy=2\\ x^2+y^2=5 \end \Rightarrow \begin y=\frac2x\\ x^2+\left(\frac2x\right)^2-5=0 \end \)
Решаем биквадратное уравнение: \begin x^2+\frac<4>-5=0\Rightarrow\frac=0\Rightarrow \begin x^4-5x^2+4=0\\ x\ne 0 \end \\ (x^2-4)(x^2-1)=0\Rightarrow \left[ \begin x^2=4\\ x^2=1 \end \right. \Rightarrow \left[ \begin x=\pm 2\\ x=\pm 1 \end \right. \end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: \( \left[ \begin \begin x=1\\ y=\frac2x=2 \end \\ \begin x=2\\ y=\frac22=1 \end \end \right. \)
Ответ: \(\left\<(1;2),(2,1)\right\>\)

б) \( \begin x^=27\\ x^<2y-5>=\frac13 \end \)
ОДЗ: \(x\gt 0,\ x\ne 1\)
Логарифмируем: \( \begin y+1=\log_x27=\log_x3^3=3\log_x3\\ 2y-5=\log_x\frac13=\log_x3^<-1>=-\log_x3 \end \)
Замена: \(z=\log_x3\) \begin \begin y+1=3z\\ 2y-5=-z\ |\cdot 3 \end \Rightarrow \begin y+1=3z\\ 6y-15=-3z \end \Rightarrow \begin 7y-14=0\\ z=5-2y \end \Rightarrow \begin y=2\\ z=1 \end \end Возвращаемся к исходной переменной: $$ \begin y=2\\ \log_x3=1 \end \Rightarrow \begin x^1=3\\ y=2 \end \Rightarrow \begin x=3\\ y=2 \end $$
Ответ: (3;2)

в*) \( \begin 3(\log_y x-\log_x y)=8\\ xy=16 \end \)
ОДЗ: \( \begin x\gt 0,\ x\ne 1\\ y\gt 0,\ y\ne 1 \end \)
Сделаем замену \(t=\log_x y\). Тогда \(\log_y x=\frac<1><\log_x y>=\frac1t\)
Подставим в первое уравнение и решим его: \begin 3\left(\frac1t-t\right)=8\Rightarrow\frac<1-t^2>=\frac83\Rightarrow \begin 3(1-t^2)=8t\\ t\ne 0 \end\\ 3t^2+8t-3=0\Rightarrow (3t-1)(t+3)=0\Rightarrow \left[ \begin t_1=\frac13\\ t_2=-3 \end \right. \end Прологарифмируем второе уравнение по \(x\): $$ \log_x(xy)=\log_x16\Rightarrow 1+\log_x y=\log_x16\Rightarrow 1+t=\log_x 16 $$ Получаем: \begin \left[ \begin \begin t=\frac13\\ \log_x16=1+t=\frac43 \end \\ \begin t=-3\\ \log_x16=1+t=-2 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x^<\frac43>=16 \end \\ \begin t=-3\\ x^<-2>=16 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x=(2^4)^<\frac34>=2^3=8 \end \\ \begin t=-3\\ x=(16)^<-\frac12>=\frac14 \end \end \right. \end Возвращаемся к исходной переменной: \begin \left[ \begin \begin x=8\\ \log_x y=\frac13 \end \\ \begin x=\frac14\\ \log_x y=-3 \end \end \right. \Rightarrow \left[ \begin \begin x=8\\ y=8^<\frac13>=2 \end \\ \begin x=\frac14\\ y=\left(\frac14\right)^<-3>=64 \end \end \right. \end
Ответ: \(\left\<(8;2),\left(\frac14; 64\right)\right\>\)

г*) \( \begin (x+y)\cdot 3^=\frac<5><27>\\ 3\log_5(x+y)=x-y \end \)
ОДЗ: \(x+y\gt 0\)
Прологарифмируем первое уравнение по 3: \begin \log_3\left((x+y)\cdot 3^\right)=\log_3\frac<5><27>\\ \log_3(x+y)+(y-x)=\log_3\frac<5><27>\\ \log_3(x+y)-\log_3\frac<5><27>=x-y \end Получаем:\(x-y=3\log_5(x+y)=\log_3(x+y)-\log_3\frac<5><27>\)
Решим последнее уравнение относительно \(t=x+y\) \begin 3\log_5 t=\log_3 t-\log_3\frac<5><27>\\ 3\cdot\frac<\log_3t><\log_35>-\log_3t=-\log_3\frac<5><27>\\ \log_3t\cdot\left(\frac<3><\log_35>-1\right)=-\log_3\frac<5><27>\\ \log_3t=-\frac<\log_3\frac<5><27>><\frac<3><\log_35>-1>=-\frac<(\log_35-3)\log_35><3-\log_35>=\log_35\\ t=5 \end Тогда: \(x-y=3\log_5t=3\log_55=3\)
Получаем систему линейных уравнений: \begin \begin x+y=5\\ x-y=3 \end \Rightarrow \begin 2x=5+3\\ 2y=5-3 \end \Rightarrow \begin x=4\\ y=1 \end \end Требование ОДЗ \(x+y=4+1\gt 0\) выполняется.
Ответ: (4;1)

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое уравнение
Решить уравнение

Немного теории.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем \( x = \sqrt[4] <81>= 3 \)

Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b

log77 = 1, так как 7 1 = 7

Определение логарифма можно записать так:

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить \( 3^ <-2\log_3 5>\)
Используя свойства степени и основное логарифмическое тождество, находим

Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + \frac<1> <1>+ \frac<1> <1 \cdot 2>+ \frac<1> <1 \cdot 2 \cdot 3>+ \dots + \frac<1> <1 \cdot 2 \cdot 3 \cdot \dots \cdot n>+ \dots $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac<\lg b> <\lg a>, \;\; \log_a b = \frac<\ln b> <\ln a>$$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.

Ось Oy является вертикальной асимптотой графика функции y = logax

Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, \( a \neq 1 \), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16


источники:

http://reshator.com/sprav/algebra/10-11-klass/logarifmicheskie-uravneniya-i-sistemy/

http://www.math-solution.ru/math-task/logarithmic-equality