Как решать уравнения с подстановкой 9 класс

Методы решения систем уравнений с двумя переменными

п.1. Метод подстановки

Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.

Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.

п.2. Метод сложения

п.3. Метод замены переменных

Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.

п.4. Графический метод

Графический метод подробно рассмотрен в §15 данного справочника.

п.5. Примеры

Пример 1. Решите систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Решаем методом подстановки: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Для нижнего уравнения: \( \mathrm \)
Подставляем в верхнее уравнение: \( \mathrm \)

б) \( \left\< \begin < l >\mathrm & \\ \mathrm <(x^2+y^2)xy=10>& \end\right. \)
Замена переменных: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: \( \left\< \begin < l >\mathrm & \\ \mathrm <(a^2-2b)b=10>& \end\right.\Rightarrow \left\< \begin < l >\mathrm & \\ \mathrm <9b-2b^2=10>& \end\right. \)
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ \mathrm< D=9^2-4\cdot 2\cdot 10=1,\ \ b=\frac<9\pm 1><4>> = \left[\begin < l >\mathrm & \\ \mathrm & \end\right. $$ Возвращаемся к исходным переменным: \( \left[\begin < l >\left\<\begin < l >\mathrm & \\ \mathrm & \end\right.& \\ \left\<\begin < l >\mathrm & \\ \mathrm & \end\right. \end\right. \)

Решение систем уравнений способом подстановки. 9-й класс

Разделы: Математика

Класс: 9

Данный урок разработан к главе III, п.3.5 учебника “Математика 9” под редакцией Г.В.Дорофеева.

По календарно-тематическому плану — это второй урок темы “Системы уравнений с двумя переменными”.

На первом уроке по данной теме рассмотрен графический способ решения систем, поэтому с целью актуализации и повторения знаний на первом этапе проводится проверка выполнения домашнего задания.

Изучение нового материала строится на имеющемся опыте решения систем линейных уравнений, полученном при изучении темы “Системы линейных уравнений” в курсе алгебры 8-го класса

Закрепление нового материала проводится таким образом, что одно задание выполняется более подготовленным обучающимся, который комментирует все свои действия, другая часть предлагается для самостоятельного решения, учитель оказывает консультативную помощь тем обучающимся, у которых решения вызвали затруднения (разрешаются консультации слабоуспевающих обучающихся более подготовленными).

Домашнее задание состоит из теоретической и практической частей.

В течение всего урока учитель использует мультимедийное оборудование, что обеспечивает зрительное восприятие материала, способствует развитию зрительной памяти.

  • обеспечение системного усвоения знаний учащихся по теме “Системы уравнений с двумя переменными”;
  • повторение решения систем уравнений графическим способом, способом подстановки;
  • развитие познавательного интереса учащихся, умение работать самостоятельно;
  • воспитание ответственности при подготовке к урокам алгебры.
  • развивать умение запоминать и извлекать информацию из памяти, способность концентрировать внимание;
  • развивать умения и навыки решения систем уравнений, память, внимание, наблюдательность.
  • Оборудование: мультимедийное оборудование, чертёжные инструменты.

    Ход урока

    I. Проверка домашнего задания, повторение ранее изученного.

    • После выполнения данного задания осуществляется проверка решения (слайд №2).

    В ходе проверки обучающиеся отвечают на вопросы учителя:

    • Что является графиком каждого уравнения системы?
    • Что является решением системы уравнений с двумя переменными?
    1. Обучающийся, выполнявший домашнее задание около доски, разъясняет этапы его выполнения. Обучающиеся класса сверяют задание с собственным решением, если есть неточности, то вносят поправки, корректируют своё решение.

    II. Подготовка к изучению нового материала.

    На предыдущих уроках научились решать системы уравнений графическим способом. В курсе алгебры 8 класса мы изучали два алгебраических способа решения систем линейных уравнений: способ сложения и способ подстановки. Рассмотрим применение этих способов для решения систем уравнении, в которых только одно линейное уравнение или вообще линейных уравнений нет.

    Учитель предлагает определить способы решения систем уравнений с двумя переменными (слайд № 3)

    III. Изучение нового материала.

    IV. Закрепление изученного материала.

    • Решить систему уравнений
    • Один из более подготовленных обучающихся комментирует решение, сидя за партой.
    • По слайду № 6 обучающиеся проверяют решение.
    • Выполнить самостоятельно задания по вариантам (слайд № 7):
      • I вариант: № 435(а), 436(б);
      • II вариант: № 435(б), 436(а).

    V. Подведение итогов урока.

    • Оценить работу обучающихся;
    • Повторить способы решения систем уравнений;
    • Повторить алгоритм решения системы уравнений способом подстановки (слайд № 4).

    Как решать систему уравнений

    О чем эта статья:

    8 класс, 9 класс, ЕГЭ/ОГЭ

    Основные понятия

    Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

    Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

    Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

    Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

    Линейное уравнение с двумя переменными

    Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

    Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

    Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

    Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

    Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

    Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

    Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

    Провести прямую через эти две точки и вуаля — график готов.

    Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

    Система двух линейных уравнений с двумя переменными

    Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

    Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

    Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

    Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

    Можно записать систему иначе:

    Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

    Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

    Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

    Метод подстановки

    Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

    Выразить одну переменную через другую из более простого уравнения системы.

    Подставить то, что получилось на место этой переменной в другое уравнение системы.

    Решить полученное уравнение, найти одну из переменных.

    Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

    Записать ответ. Ответ принято записывать в виде пар значений (x; y).

    Потренируемся решать системы линейных уравнений методом подстановки.

    Пример 1

    Решите систему уравнений:

    x − y = 4
    x + 2y = 10

    Выразим x из первого уравнения:

    x − y = 4
    x = 4 + y

    Подставим получившееся выражение во второе уравнение вместо x:

    x + 2y = 10
    4 + y + 2y = 10

    Решим второе уравнение относительно переменной y:

    4 + y + 2y = 10
    4 + 3y = 10
    3y = 10 − 4
    3y = 6
    y = 6 : 3
    y = 2

    Полученное значение подставим в первое уравнение вместо y и решим уравнение:

    x − y = 4
    x − 2 = 4
    x = 4 + 2
    x = 6

    Ответ: (6; 2).

    Пример 2

    Решите систему линейных уравнений:

    x + 5y = 7
    3x = 4 + 2y

    Сначала выразим переменную x из первого уравнения:

    x + 5y = 7
    x = 7 − 5y

    Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

    3x = 4 + 2y
    3 (7 − 5y) = 4 + 2y

    Решим второе линейное уравнение в системе:

    3 (7 − 5y) = 4 + 2y
    21 − 15y = 4 + 2y
    21 − 15y − 2y = 4
    21 − 17y = 4
    17y = 21 − 4
    17y = 17
    y = 17 : 17
    y = 1

    Подставим значение y в первое уравнение и найдем значение x:

    x + 5y = 7
    x + 5 = 7
    x = 7 − 5
    x = 2

    Ответ: (2; 1).

    Пример 3

    Решите систему линейных уравнений:

    x − 2y = 3
    5x + y = 4

    Из первого уравнения выразим x:

    x − 2y = 3
    x = 3 + 2y

    Подставим 3 + 2y во второе уравнение системы и решим его:

    5x + y = 4
    5 (3 + 2y) + y = 4
    15 + 10y + y = 4
    15 + 11y = 4
    11y = 4 − 15
    11y = −11
    y = −11 : 11
    y = −1

    Подставим получившееся значение в первое уравнение и решим его:

    x − 2y = 3
    x − 2 (−1) = 3
    x + 2 = 3
    x = 3 − 2
    x = 1

    Ответ: (1; −1).

    Метод сложения

    Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

    При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

    Складываем почленно левые и правые части уравнений системы.

    Решаем получившееся уравнение с одной переменной.

    Находим соответствующие значения второй переменной.

    Запишем ответ в в виде пар значений (x; y).

    Система линейных уравнений с тремя переменными

    Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

    Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

    Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

    Решение задач

    Разберем примеры решения систем уравнений.

    Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

    5x − 8y = 4x − 9y + 3

    5x − 8y = 4x − 9y + 3

    5x − 8y − 4x + 9y = 3

    Задание 2. Как решать систему уравнений способом подстановки

    Выразить у из первого уравнения:

    Подставить полученное выражение во второе уравнение:

    Найти соответствующие значения у:

    Задание 3. Как решать систему уравнений методом сложения

    1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
    1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
    1. Найти у, подставив найденное значение в любое уравнение:
    1. Ответ: (1; 1), (1; -1).

    Задание 4. Решить систему уравнений

    Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

    Задание 5. Как решить систему уравнений с двумя неизвестными

    При у = -2 первое уравнение не имеет решений, при у = 2 получается:


    источники:

    http://urok.1sept.ru/articles/597364

    http://skysmart.ru/articles/mathematic/reshenie-sistem-uravnenij