Как решать уравнения с штрихом

Дифференциальные уравнения. Что это?

Срок выполненияот 1 дня
Ценаот 100 руб./задача
Предоплата50 %
Кто будет выполнять?преподаватель или аспирант

Вы уже имеете находить производные и интегралы? Тогда настало самое время, чтобы перейти к более сложной теме, а именно, решению дифференциальных уравнений (ДУ, в простонародье диффуров). Но не все так страшно, как кажется на первый взгляд.

Дифференциальное уравнение: что это такое?

Дифференциальное уравнение (ДУ) – это уравнение, которое вместе с самой функцией (и ее аргументами), содержит еще и ее производную или несколько производных.

Дифференциальное уравнение: что нужно знать еще?

Первое (и главное), что понадобится, это умение правильно определять тип дифференциального уравнения. Второе, но не менее важное, это умение хорошо интегрировать и дифференцировать.

Не секрет, что дифференциальные уравнения бывают разных типов. Но… для начала отметим, что ДУ бывают разных порядков. Порядок ДУ — это порядок высшей производной, входящей в дифференциальное уравнение. Классификацию ДУ согласно порядку уравнения можно посмотреть в следующей таблице:

Порядок уравненияВид уравненияПример
I
II
n

Наиболее часто приходится иметь дело с ДУ первого и второго порядка, реже третьего. В 99% случаев в задачах встречаются три типа ДУ первого порядка: уравнения с разделяющимися переменными, однородные уравнения и линейные неоднородные уравнения. Иногда еще встречаются более редкие типы ДУ: уравнения в полных дифференциалах, уравнения Бернулли и др. Среди ДУ второго порядка часто встречаются уравнения, приводящиеся к ДУ первого порядка, линейные однородные и неоднородные уравнения с постоянными коэффициентами.

Дифференциальное уравнение: решение – что это значит и как его найти?

При решении ДУ нам предлагается найти либо общее решение (общий интеграл), либо частное решение. Общее решение y = f(x, C) зависит от некоторой постоянной ( С — const), а частное решение не зависит: y = f(x, C0).

С геометрической точки зрения общее решение – это семейство кривых на координатной плоскости, а частное решение – это одна прямая этого семейства, проходящая через некоторую точку.

Давайте рассмотрим примеры решения некоторых ДУ. Начнем с ДУ первого порядка с разделяющимися переменными:

Здесь все очень просто как на уроке физкультуры, когда ученики класса делятся на две команды, в одну из которых входят только мальчики, а в другую – только девочки. Применительно к уравнению делаем следующее: в левую часть от знака равенства переносим все то, что содержит переменную y, а в правую часть – переменную x.
Получаем:

Далее интегрируем обе части:

Итоговое общее решение выглядит следующим образом: y = C(x-1) — 2. Все оказалось очень просто, не правда ли?

Не сложнее и решение однородных ДУ второго порядка с постоянными коэффициентами. Здесь всего-то и нужно знать из курса школьной алгебры, как решаются квадратные уравнения, а из курса по ДУ, как правильно записать общее решение.

Для наглядности рассмотрим пример:

Составляем характеристическое уравнение, заменяя переменную y на переменную k, а количество штрихов соответствующей степенью (два штриха – степень 2, один штрих – степень 1, нет штрихов – степень 0). Получаем квадратное уравнение, решить которое можно с помощью дискриминанта или теоремы Виета:

После того, как корни характеристического уравнения найдены, вспоминаем правила записи общего решения однородного ДУ:

  1. Корни характеристического уравнения являются действительными и различными. Общее решение записывается в виде:
  2. Корни характеристического уравнения являются комплексными. Общее решение записывается в виде:
  3. Корни характеристического уравнения являются действительными и равными. Общее решение записывается в виде:

Вспоминаем, что наше уравнение имеет два различных действительных корня. Следовательно, общее решение запишем в виде:

Решение линейных неоднородных ДУ с постоянными коэффициентами выполняется в два этапа:

  1. нахождение общего решения линейного однородного ДУ;
  2. нахождение и частного решения линейного неоднородного ДУ.

Выполнение первого этапа рассмотрено на примере чуть раньше. То, в каком виде мы будем искать частное решение неоднородного ДУ, зависит от того, что стоит в уравнении справа от знака равенства. Все возможные случаи подробно рассматривают в учебной литературе.

Итак, тема «Решение задач по дифференциальным уравнениям» изучается в ВУЗах, но, как было показано выше, решить некоторые ДУ может и школьник.

Дифференциальные уравнения и методы их решения рассматриваются практически в каждом учебнике по высшей математике и математическому анализу. Особенно хорошо данная тема рассмотрена в учебнике автора Пискунов Н.С., а называется он «Дифференциальное и интегральное исчисления: Учеб. Для втузов. В 2-х т. Т. II». С помощью данного учебника можно самостоятельно изучить методы решения тех типов ДУ, которые не были рассмотрены в данной статье.

Решение дифференциальных уравнений на заказ

У нас вы можете выгодно заказать решение задач с дифференциальными уравнениями. Нами накоплен большой опыт решения заданий по данной дисциплине, которым мы готовы поделиться с вами. Работа будет оформлена очень подробно. При заказе большого количества задач действует скидка. Купить решение можно, сделав заказ у нас на сайте.

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Линейные дифференциальные уравнения в частных производных первого порядка

Линейные однородные уравнения в частных производных первого порядка

Пусть X 1 , X 2 , . Xn – заданные функции переменных x 1 , x 2 , . xn .

Чтобы решить линейное однородное уравнение в частных производных первого порядка:

необходимо решить систему обыкновенных дифференциальных уравнений (уравнение характеристик):
:
Далее нужно представить решение в виде:
φ 1( x 1 , x 2 , . xn ) = C 1 ,
φ 2( x 1 , x 2 , . xn ) = C 2 ,
.
φn- 1 ( x 1 , x 2 , . xn ) = Cn- 1 ,
где Ck – постоянные.
После чего сразу получаем общее решение:
,
где F – произвольная функция от n – 1 аргументов.

Если нужно получить частное решение с определенными граничными условиями, то необходимо подставить значения переменных из граничных условий в общее решение и найти вид функции F .

Линейные неоднородные уравнения в частных производных первого порядка

Пусть X 1 , X 2 , . Xn+ 1 – заданные функции от переменных x 1 , x 2 , . xn и z .

Чтобы решить линейное неоднородное уравнение в частных производных первого порядка:
,
необходимо решить уравнение характеристик:
.
Решение этой системы нужно представить в следующем виде:
φ 1( x 1 , x 2 , . xn , z ) = C 1 ,
φ 2( x 1 , x 2 , . xn , z ) = C 2 ,
.
φn ( x 1 , x 2 , . xn , z ) = Cn .
После чего сразу получаем общий интеграл в неявном виде:

где F – произвольная функция. Также общий интеграл можно представить в различных вариантах, например:
φ 1 = F ( φ 2 , φ 3 , . φn ) ,
φ 2 = F ( φ 1 , φ 3 , . φn ) ,
и т. д.

Примеры решений линейных уравнений в частных производных первого порядка

Однородное уравнение

Найти общее решение линейного однородного уравнения в частных производных первого порядка и решить задачу Коши с указанным граничным условием:
,
при .

Это линейное однородное уравнение в частных производных первого порядка. Составляем уравнение характеристик:

Это уравнение характеристик содержит три уравнения:
;
;
.
Нам нужно выбрать и решить любые два из них. Тогда третье будет выполнено автоматически.

Выбираем и решаем первое уравнение:

Здесь переменные уже разделены, интегрируем:

Интегралы табличные,

Потенцируем:

Отсюда

Подставим во второе уравнение:

Или:

Это линейное уравнение. Решаем с помощью интегрирующего множителя. Умножим на x -1 и преобразуем:

Интегрируем:

Подставим полученное ранее выражение C1 = x y 2 :

Итак, мы нашли два интеграла уравнения характеристик:

Общее решение исходного уравнения в частных производных имеет вид:

где F — произвольная функция от двух аргументов F(φ1, φ2) . Найдем ее вид из граничного условия
при .

Рассматриваем решение на границе.
Положим x y = –1 :

Отсюда

На границе
.

Итак, мы нашли, что на границе функция F имеет вид:
F ( φ 1 , φ 2 ) = φ 1 φ 2 .
Такой же вид она имеет и во всей области
Подставляя
;
,
получаем частное решение исходного уравнения в частных производных с заданным граничным условием:

Общее решение:

где F — произвольная функция от двух аргументов F ( φ 1 , φ 2 ) .

Неоднородное уравнение

Найти поверхность, удовлетворяющую данному уравнению
,
и проходящую через данную окружность x + y + z = 0 , x 2 + y 2 + z 2 = a 2 .

Это линейное неоднородное уравнение в частных производных первого порядка. Составляем уравнение характеристик:

Оно содержит три уравнения:
;
;
.
Нам нужно выбрать и решить любые два из них. Тогда третье удовлетворится автоматически. Выбираем первое и второе уравнения.

Решаем уравнение:

Умножаем на 2 z и интегрируем:

Интегралы табличные,

Потенцируем:

Отсюда
x = C 1 y

Подставим во второе уравнение:

Или:

Замечаем, что , тогда

Это линейное уравнение. Решаем с помощью интегрирующего множителя. Разделим на y 2 и преобразуем:

Интегрируем:

Подставим полученное ранее выражение и преобразуем:

Итак, мы нашли два интеграла уравнения характеристик:

Для удобства дальнейших вычислений заметим, что функция от постоянной также является постоянной. Поэтому запишем интегралы в виде:

Общий интеграл исходного уравнения в частных производных имеет вид:
F ( φ 1 , φ 2) = 0
Но, поскольку F — произвольная функция от двух аргументов, то общий интеграл можно записать также в виде:
φ 1 = F ( φ 2) ,
где F — произвольная функция от одного аргумента.

Найдем вид этой функции, рассматривая решение на границе.
На границе, x 2 + y 2 + z 2 = a 2 , .
Из уравнения x + y + z = 0 , z = – ( x + y ) . Подставим в x 2 + y 2 + z 2 = a 2 и преобразуем:
x 2 + y 2 + ( x + y ) 2 = a 2
x 2 + y 2 + x 2 + 2 xy + y 2 = a 2
2 x 2 + 2 xy + 2 y 2 = a 2
Разделив на y 2 , имеем

Итак, мы нашли, что на границе:

.
Подставим в выражение общего интеграла:
φ 1 = F ( φ 2)
.
Сделаем подстановку
:
.

Итак, мы нашли, что на границе функция F имеет вид:
.
Такой же вид она имеет и во всей области, тогда
.
Подставляем выражения для φ1 и φ2 :

.
Умножим на a 2 y 2 .

Автор: Олег Одинцов . Опубликовано: 23-09-2014


источники:

http://mathdf.com/dif/ru/

http://1cov-edu.ru/differentsialnye-uravneniya/chastnie_proizvodnie/