Как решать уравнения вида sinx

Урок тригонометрии «Различные способы решения уравнения sinx + cosx = 1»

Разделы: Математика

Образовательные, развивающие и воспитательные цели урока:

  • ликвидировать пробелы в знаниях и систематизировать умения и навыки по теме “Решение тригонометрических уравнений”;
  • развивать математическую речь, логику рассуждений при применении знаний в указанной учителем ситуации;
  • воспитывать умение слушать товарищей, корректность в ведении дискуссии, умение видеть красоту математических образов.
  • Техническая оснащенность урока: компьютеры.

    План сдвоенного урока.

  • Подготовка к работе.
  • Математический диктант по проверке тригонометрических формул.
  • Различные аналитические способы решения уравнения sin x + cos x = 1.
  • Графические способы решения уравнения sin x + cos x = 1 (в компьютерном классе).
  • Подведение итогов урока.
  • I. Повторение по теме “Уравнения”.

    Вопросы для повторения.

  • Что называется уравнением?
  • Что означает решить уравнение?
  • Что называется корнем уравнения?
  • При каких операциях в ходе решения уравнения могут появиться посторонние корни?
  • А когда может произойти потеря корней?
  • II. Сообщение темы урока, знакомство с целями.

    Урок посвящён способам решения уравнения sin x + cos x = 1.

    III. Ход работы.

    Я буду ставить перед вами задачу, определив способ решения, а вы будете именно этим способом решать данное уравнение, используя различные приёмы. Работать будете на листочках. Кто раньше решит, выйдет и приведёт своё решение на обороте доски (такую возможность будут иметь одновременно 4 ученика).

    По окончанию работы и сдачи листочков на проверку класс обсудит приведённые на доске варианты решений. Затем начнётся следующий этап работы. Не забывайте каждый раз подписывать листочки.

    Различные способы решения тригонометрического уравнения sin x + cos x = 1.

    I способ. Введение вспомогательного угла.

    Рассмотрим два приёма:

    Разделим обе части уравнения на :

    Воспользуемся алгоритмом решения уравнений вида а sin x + b cos x = c.

    применительно к уравнению sin x + cos x, имеем:

    Подпишите листочки.

    1. Изложите на листочках алгоритм использования вспомогательного угла при решении уравнений вида a sin x + b cos x =0.
    2. Запишите формулу применения синуса дополнительного угла для выражения sin x + cos x.
    3. Теперь выразите sin x + cos x через косинус дополнительного угла.
    4. Кто раньше закончит работу, покажет свои варианты ответов на доске.

    II способ. С помощью универсальной тригонометрической подстановки.

    Запишите формулы универсальной подстановки для sin x, cos x . Кто первый закончит, покажет на доске.

    (1)

    Выводы: Обращение к функции tgx / 2 предполагает, что cosx / 2 0, т.е. x 2n, n Z.

    При таком переходе возможна потеря решений, т.к. исходное уравнение имело смысл при всех значениях переменной х, в том числе и при x = + 2n, n Z.

    Есть вероятность того, что они могут оказаться корнями исходного уравнения,

    поэтому надо проверить, не являются ли значения x = + 2n, n Z решениями данного уравнения.

    sin ( + 2n) + cos( + 2n) = 1

    -1 1.

    Следовательно, x = + 2n, n Z.

    Решением уравнения не является и переход к функции tgx / 2, в данном случае потери решения за собой не повлечёт. Итак, по формулам (1) из исходного уравнения sin x + cos x = 1, получаем:

    III способ. Сведение к однородному уравнению.

    Возможно, ли получить из данного уравнения однородное уравнение?

    Надо перейти к аргументу x/2 и применить формулы половинного аргумента к функциям в левой и правой частях уравнения sin x + cos x = 1.

    Написать на листочках формулы, которые при этом используются, и то однородное уравнение, которое получится. Получили однородное уравнение второй степени.

    2sinx/2*cosx/2 + cos 2 x/2- sin 2 x/2 = sin 2 x/2 + cos 2 x/2 (2)

    Подпишите листочки и решите данное однородное тригонометрическое уравнение второй степени

    2sinx/2*cosx/2 + cos 2 x/2- sin 2 x/2 = sin 2 x/2 + cos 2 x/2,

    2sinx/2*cosx/2 + cos 2 x/2- sin 2 x/2 — sin 2 x/2 — cos 2 x/2 = 0

    sinx/2*cosx/2 — sin 2 x/2 = 0

    Это уравнение можно решить, используя различные приёмы.

    Разделим обе части уравнения на cos 2 x/2, т.к. cos 2 x/2 0

    Ответ: <2n; /2 + 2k>, где n, k Z

    Рассмотрим решение уравнения (2) способом разложения на множители:

    sinx/2*cosx/2 — sin 2 x/2 = 0,

    sinx/2*(cosx/2 — sinx/2) = 0,

    x = 2n, n Z;

    b) cosx/2 – sinx/2 = 0

    x = /2 + 2k, k Z.

    Ответ : <2n; /2 + 2k>, где n, k Z.

    IV способ. Преобразование суммы в произведение.

    Запишите формулы преобразования суммы и разности тригонометрических функций в произведение. Кто первый закончит работу, воспроизведёт её на доске. Используя формулы преобразования суммы тригонометрических функций в произведение, решить данное уравнение:

    а) Выразим cos x через sin(/2 – x):

    О т в е т : <2n; /2 + 2k>, где n, k Z

    sin x + cos x = 1

    б) Выразим sin x через cos (/2 – х):

    V способ. Применение формул половинного и двойного аргумента.

    Напишите формулы тригонометрических функций двойного аргумента и половинного аргумента.

    Запишите: sin x + cos x = 1; sin x = 1- cos x, приведите левую и правую части уравнения к аргументу х/2, используя формулы двойного и половинного угла, и решите получившееся уравнение.

    2sinx/2 * cosx/2 = 2 sin 2 x/2 ,

    sinx/2 * cosx/2 = sin 2 x/2 ,

    x = /2 + 2k, k Z.

    x = 2n; n, Z

    Ответ: <2n; /2 + 2k>, где n, k Z.

    Или это уравнение можно решить делением обеих частей на cos 2 x/2.

    VI способ. Возведение обеих частей уравнения в квадрат:

    sin x + cos x = 1,

    (sin x + cos x) 2 = 1,

    2 sin x cos x + 1= 1,

    2 sin x cos x = 0,

    При возведении в степень возможно появление посторонних решений уравнения, но не возможна потеря корней, т.е. получается уравнение-следствие. Причина приобретения корней состоит в том, что при возведении в квадрат чисел, равных по абсолютной величине, но разных по знаку, получается один и тот же результат.

    При возведении в квадрат обеих частей уравнения sin x + cos x = 1, мы производим эту же операцию и с частями «теневого» уравнения (- sin x — cos x = 1), поскольку результат этих действий будет один и тот же.

    Следовательно, по окончании решения, обязательно следует производить отбор корней.

    1. Проверим корни вида x = j:

    Значит, значения x = 2k, k Z, являются решениями исходного уравнения.

    х= j , при j = 2k + 1, k Z.

    следовательно, значения x = 2(k+1), где k Z, не являются решениями исходного уравнения.

    2. Проверяем корни вида x = /2 + j, j Z:

    j = 2n : x = /2+ 2n, где n Z.

    Значит, значения x = /2+ 2n, где n Z являются решениями исходного уравнения.

    x = /2 + 2(n+1); n Z.

    следовательно, значения x = /2 + 2(n+1); n Z не являются решениями исходного уравнения.

    Ответ : <2n; /2 + 2k>, где n, k Z.

    VII способ. Замена cos x выражением :

    Проверив результат, убеждаемся, что из серии x = k, k Z решением исходного уравнения являются только значения х вида: x = 2h, где h Z при k = 2h.

    Ответ : <2h; /2 + 2n>, где n, h Z.

    VIII способ. Графическое решение уравнения sin x + cos x = 1.

    Предварительно проводится фронтальная беседа.

    1. Что значит решить уравнение графически?

    2. Как можно решить графически данное уравнение?

    1. Построить в одной системе координат графики функций:

    Абсциссы точек пересечения графиков функций и являются решением данного уравнения.

    2. Построить график функции y = sin x+ cos x –1.

    Абсциссы точек пересечения графика с осью абсцисс являются решением исходного уравнения.

    3. Построение графиков на экране компьютера:

    Прежде чем приступить к работе на компьютере, повторим элементы компьютерной грамотности, позволяющие построение графиков.


      Что такое масштаб применительно к ЭВМ?

    Масштаб – количество точек на экране, приходящееся на единицу значения.


    Что называется пикселем?

    Пиксель – наименьший объект графической среды, характеризующийся координатой Х и У (это точка на экране).


    С помощью какого оператора можно построить точку на экране?


    C помощью, какого оператора устанавливается новая система координат?

    Window (x1, y1) – (x2, y2).


    Рассказать о порядке построения линий осей координат на экране.

    Line (x, y) – (x2, y2), c

    Назовите операторы, которые обеспечивают надписи на осях координат.

    Locate x, y: PRINT «Y».


    Что собой представляет график на экране?


    Что обеспечивает развёртку графика по осям координат?

    Выполняем решение систем (1) на компьютере по соответствующим программам.

    IV. Домашнее задание:

    Решить различными способами уравнение sinx – cosx = 1 или любое другое уравнение.

    РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

    Простейшими тригонометрическими уравнениями называют уравнения

    Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

    19.1. Уравнение cos x = a

    Объяснение и обоснование

    1. Корни уравненияcosx=a.

    При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

    2.Частые случаи решения уравнения sin x = a.

    Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

    Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

    Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

    Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

    Примеры решения задач

    Замечание. Ответ к задаче 1 часто записывают в виде:

    19.3. Уравнения tg x = a и ctg x = a

    Объяснение и обоснование

    1.Корни уравнений tg x = a и ctg x = a

    Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

    Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

    При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

    Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

    Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

    таким образом, уравнение ctg x = 0 имеет корни

    Примеры решения задач

    Вопросы для контроля

    1. Какие уравнения называют простейшими тригонометрическими?
    2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
    3. Выведите формулы решения простейших тригонометрических уравнений.
    4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

    Упражнения

    Решите уравнение (1-11)

    Найдите корни уравнения на заданном промежутке (12-13)

    Арксинус. Решение уравнения sin x = a

    п.1. Понятие арксинуса

    В записи \(y=sinx\) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
    Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если \(sinx=1\), то \(x=\frac\pi2+2\pi k,\ k\in\mathbb\); если \(sinx=0\), то \(x=\pi k,\ k\in\mathbb\) и т.д.
    Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: \(-\frac\pi2 \leq x\leq \frac\pi2\) (правая половина числовой окружности).

    \(arcsin\frac12=\frac\pi6,\ \ arcsin\left(-\frac<\sqrt<3>><2>\right)=-\frac<\pi><3>\)
    \(arcsin2\) – не существует, т.к. 2> 1

    п.2. График и свойства функции y=arcsinx


    1. Область определения \(-1\leq x\leq1\) .
    2. Функция ограничена сверху и снизу \(-\frac\pi2\leq arcsinx\leq \frac\pi2\) . Область значений \(y\in[-\frac\pi2; \frac\pi2]\)
    3. Максимальное значение \(y_=\frac\pi2\) достигается в точке x=1
    Минимальное значение \(y_=-\frac\pi2\) достигается в точке x =-1
    4. Функция возрастает на области определения.
    5. Функция непрерывна на области определения.
    6. Функция нечётная: \(arcsin(-x)=-arcsin(x)\) .

    п.3. Уравнение sin⁡x=a

    Значениями арксинуса могут быть только углы от \(-\frac\pi2\) до \(\frac\pi2\) (от -90° до 90°). А как выразить другие углы через арксинус?

    Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.

    1) Решим уравнение \(sinx=\frac12\).
    Найдем точку \(\frac12\) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\frac\pi6\) и \(\frac<5\pi><6>\) — это базовые корни.
    Если взять корень справа \(\frac\pi6\) и прибавить к нему полный оборот \(\frac\pi6+2\pi=\frac<13\pi><6>\), синус полученного угла \(sin\frac<13\pi><6>=\frac12\), т.е. \(\frac<13\pi><6>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi6+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(\frac<5\pi><6>+2\pi k\).
    Получаем ответ: \(x_1=\frac\pi6+2\pi k\) и \(x_2=\frac<5\pi><6>+2\pi k\)
    Заметим, что \(arcsin\frac12=\frac\pi6\). Полученный ответ является записью вида
    \(x_1=arcsin\frac12+2\pi k\) и \(x_2=\pi-arcsin\frac12+2\pi k\)
    А т.к. арксинус для \(\frac12\) точно известен и равен \(\frac\pi6\), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.

    2) Решим уравнение \(sinx=0,8\)

    Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
    По определению правая точка – это угол, равный arcsin0,8.
    Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin⁡0,8).
    Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
    Получаем ответ:
    \(x_1=arcsin0,8+2\pi k,\)
    \(x_2=\pi-arcsin0,8+2\pi k\)

    Докажем, что семейства решений для корней справа и слева можно записать одним выражением \(x=(-1)^k arcsina+\pi k\).
    Действительно, для чётных \(k=2n\) получаем: $$ x=(-1)^ <2n>arcsina+\pi \cdot 2n=arcsina+2\pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
    Для нечётных \(k=2n+1\):
    $$ x=(-1)^ <2n+1>arcsina+\pi \cdot (2n+1)=-arcsina+2\pi n +\pi=\pi-arcsina+2\pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
    Обратное преобразование двух семейств решений в общую запись аналогично.
    Следовательно: $$ x=(-1)^k arcsina+\pi k\Leftrightarrow \left[ \begin x=arcsina+2\pi n\\ x=\pi-arcsina+2\pi n \end \right. $$ Что и требовалось доказать.

    Для примеров, решённых выше, можем записать: $$ 1) \left[ \begin x_1=\frac\pi6+2\pi k\\ x_2=\frac<5\pi><6>+2\pi k \end \right. \Leftrightarrow x=(-1)^k\frac\pi6 +\pi k $$
    $$ 2) \left[ \begin x_1=arcsin0,8+2\pi k\\ x_2=\pi-arcsin0,8+2\pi k \end \right. \Leftrightarrow x=(-1)^karcsin0,8 +\pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
    Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
    Если же просто нужно записать ответ, то пишут общее выражение.

    п.4. Примеры

    Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.

    Для \(y=arcsinx\) область определения \(-1\leq x\leq 1\), область значений \(-\frac\pi2\leq y\leq \frac\pi2\).
    Обратная функция \(y=sinx\) должна иметь ограниченную область определения \(-\frac\pi2\leq x\leq \frac\pi2\) и область значений \(-1\leq y\leq 1\).
    Строим графики:

    Графики симметричны относительно прямой y=x.
    Обратная функция найдена верно.

    Пример 2. Решите уравнения:

    a) \(sin x=-1\)

    \(x=-\frac\pi2+2\pi k\)
    б) \(sin x=\frac<\sqrt<2>><2>\)

    $$ \left[ \begin x_1=\frac\pi4+2\pi k\\ x_2=\frac<3\pi><4>+2\pi k \end \right. \Leftrightarrow x=(-1)^\frac<\pi> <4>+\pi k $$
    в) \(sin x=0\)

    \(x=\pi k\)
    г) \(sin x=\sqrt<2>\)

    \(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
    Решений нет
    д) \(sin x=0,7\)

    \begin \left[ \begin x_1=arcsin(0,7)+2\pi k\\ x_2=\pi-arcsin(0,7)+2\pi k \end \right. \Leftrightarrow\\ \Leftrightarrow\ x=(-1)^k arcsin(0,7) +\pi k \end
    e) \(sin x=-0,2\)

    Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: \begin \left[ \begin x_1=-arcsin(0,2)+2\pi k\\ x_2=\pi+arcsin(0,7)+2\pi k \end \right. \Leftrightarrow\\ \Leftrightarrow x=(-1)^arcsin(0,2) +\pi k \end

    Пример 3. Запишите в порядке возрастания: $$ arcsin0,2;\ \ arcsin(-0,7);\ \ arcsin\frac\pi4 $$

    Способ 1. Решение с помощью числовой окружности

    Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; \(\frac\pi4\approx 0,79\)
    Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от \(-\frac\pi2\) до \(\frac\pi2\)).
    Получаем: $$ arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4 $$Способ 2. Решение с помощью графика \(y=arcsinx\)

    Отмечаем на оси OY аргументы 0,2; -0,7; \(\frac\pi4\approx 0,79\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4 $$Способ 3. Аналитический
    Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
    Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; \(\frac\pi4\).
    И записываем арксинусы по возрастанию: \(arcsin(-0,7)\lt arcsin0,2\lt arcsin\frac\pi4\)

    Пример 4*. Решите уравнения:
    \(a)\ arcsin(x^2-3x+3)=\frac\pi2\) \begin x^2-3x+3=sin\frac\pi2=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

    \(б)\ arcsin^2x-arcsinx-2=0\)
    \( \text<ОДЗ:>\ -1\leq x\leq 1 \)
    Замена переменных: \(t=arcsin x,\ -\frac\pi2\leq t\leq \frac\pi2\)
    Решаем квадратное уравнение: $$ t^2-t-2=0\Rightarrow (t-2)(t+1)=0\Rightarrow \left[ \begin t_1=2\gt \frac\pi2 — \text<не подходит>\\ t_2=-1 \end \right. $$ Возвращаемся к исходной переменной: \begin arcsinx=-1\\ x=sin(-1)=-sin1 \end Ответ: -sin1

    \(в)\ arcsin^2x-\pi arcsinx+\frac<2\pi^2><9>=0\)
    \( \text<ОДЗ:>\ -1\leq x\leq 1 \)
    Замена переменных: \(t=arcsin x,\ -\frac\pi2\leq t\leq \frac\pi2\)
    Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(-\pi)^2-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3 \Rightarrow \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi><3>\gt \frac\pi2 — \text <не подходит>\end \right. \end Возвращаемся к исходной переменной:
    \begin arcsinx=\frac\pi3\\ x=sin\frac\pi3=\frac<\sqrt<3>> <2>\end Ответ: \(\frac<\sqrt<3>><2>\)


    источники:

    http://ya-znau.ru/znaniya/zn/280

    http://reshator.com/sprav/algebra/10-11-klass/arksinus-reshenie-uravneniya-sinx-a/