Как решить неоднородное дифференциальное уравнение первого порядка

Линейные неоднородные дифференциальные уравнения первого порядка

В данной теме поговорим о способах решения линейных неоднородных дифференциальных уравнений вида y ‘ = P ( x ) · y = Q ( x ) . Начнем с метода вариации произвольной постоянной и покажем способ применения этого метода для решения задачи Коши. Продолжим рассмотрением метода, который предполагает представление произвольной постоянной у как произведения двух функций u ( x ) и v ( x ) . В разделе мы приводим большое количество задач по теме с детальным разбором решения.

На тот случай, если применяемые при разборе темы термины и понятия окажутся незнакомыми для вас, мы рекомендуем заглядывать в раздел «Основные термины и определения теории дифференциальных уравнений».

Метод вариации произвольной постоянной для решения ЛНДУ первого порядка

Для краткости будет обозначать линейное неоднородное дифференциальное уравнение аббревиатурой ЛНДУ, а линейное однородное дифференциальное уравнение (ЛОДУ).

ЛНДУ вида y ‘ = P ( x ) · y = Q ( x ) соответствует ЛОДУ вида y ‘ = P ( x ) · y = 0 , при Q ( x ) = 0 . Если посмотреть на дифференциальное уравнение y ‘ = P ( x ) · y = 0 , становится понятно, что мы имеем дело с уравнением с разделяющимися переменными. Мы можем его проинтегрировать: y ‘ = P ( x ) · y = 0 ⇔ d y y = — P ( x ) d x , y ≠ 0 ∫ d y y = — ∫ P ( x ) d x ⇔ ln y + C 1 = — ∫ P ( x ) d x ⇔ ln y = ln C — ∫ P ( x ) d x , ln C = — C 1 , C ≠ 0 ⇔ e ln y = e ln C — ∫ P ( x ) d x ⇔ y = C · e — ∫ P ( x ) d x

Мы можем утверждать, что значение переменной y = 0 тоже является решением, так как при этом значении переменной уравнение y ‘ = P ( x ) · y = 0 обращается в тождество. Этому случаю соответствует решение y = C · e — ∫ P ( x ) d x при значении C = 0 .

Получается, что y = C · e — ∫ P ( x ) d x — общее решение ЛОДУ, где С – произвольная постоянная.

y = C · e — ∫ P ( x ) d x — это решение ЛОДУ y ‘ = P ( x ) · y = 0 .

Для того, чтобы найти общее решение неоднородного уравнения y ‘ = P ( x ) · y = Q ( x ) , будем считать С не константой, а функцией аргумента х . Фактически, мы примем y = C ( x ) · e — ∫ P ( x ) d x общим решением ЛНДУ.

Подставим y = C ( x ) · e — ∫ P ( x ) d x в дифференциальное уравнение y ‘ = P ( x ) · y = Q ( x ) . Оно при этом обращается в тождество:

y ‘ = P ( x ) · y = Q ( x ) C x · e — ∫ P ( x ) d x + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x )

Теперь обратимся к правилу дифференцирования произведения. Получаем:

C ‘ ( x ) · e — ∫ P ( x ) d x + C ( x ) · e — ∫ P ( x ) d x + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x )

Производная сложной функции e — ∫ P ( x ) d x ‘ равна e — ∫ P ( x ) d x · — ∫ P ( x ) d x ‘ .

Теперь вспомним свойства неопределенного интеграла. Получаем:

e — ∫ P ( x ) d x · — ∫ P ( x ) d x ‘ = — e — ∫ P ( x ) d x · P ( x )

Теперь выполним переход:

C ‘ ( x ) · e — ∫ P ( x ) d x + C ( x ) · e — ∫ P ( x ) d x ‘ + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x ) C ‘ ( x ) · e — ∫ P ( x ) d x — P ( x ) · C ( x ) · e — ∫ P ( x ) d x + P ( x ) · C ( x ) · e — ∫ P ( x ) d x = Q ( x ) C ‘ ( x ) · e — ∫ P ( x ) d x = Q ( x )

Так мы пришли к простейшему дифференциальному уравнению первого порядка. В ходе решения этого уравнения мы определим функцию C ( x ) . Это позволит нам записать решение исходного ЛНДУ первого порядка следующим образом:

y = C ( x ) · e — ∫ P ( x ) d x

Подведем итог

Метод вариации произвольной постоянной при решении ЛНДУ предполагает проведение трех этапов:

  • нахождение общего решения соответствующего ЛОДУ y ‘ + P ( x ) · y = 0 в виде y = C · e — ∫ P ( x ) d x ;
  • варьирование произвольной постоянной С , что заключается в замене ее функцией С ( x ) ;
  • подстановка функции y = C ( x ) · e — ∫ P ( x ) d x в исходное дифференциальное уравнение, откуда мы можем вычислить C ( x ) и записать ответ.

Теперь применим этот алгоритм к решению задачи.

Найдите решение задачи Коши y ‘ — 2 x y 1 + x 2 = 1 + x 2 , y ( 1 ) = 3 .

Нам нужно отыскать частное решение ЛНДУ y ‘ — 2 x y 1 + x 2 = 1 + x 2 при начальном условии y ( 1 ) = 3 .

В нашем примере P ( x ) = — 2 x 1 + x 2 и Q ( x ) = x 2 + 1 . Начнем с того, что найдем общее решение ЛОДУ. После этого применим метод вариации произвольной постоянной и определим общее решение ЛНДУ. Это позволит нам найти искомое частное решение.

Общим решением соответствующего ЛОДУ y ‘ — 2 x y 1 + x 2 = 0 будет семейство функций y = C · ( x 2 + 1 ) , где С – произвольная постоянная.

Варьируем произвольную постоянную y = C ( x ) · ( x 2 + 1 ) и подставляем эту функцию в исходное уравнение:
y ‘ — 2 x y 1 + x 2 = 1 + x 2 C x · ( x 2 + 1 ‘ — 2 x · C ( x ) · ( x 2 + 1 ) 1 + x 2 = 1 + x 2 C ‘ ( x ) · ( x 2 + 1 ) + C ( x ) · 2 x — 2 x · C ( x ) = 1 + x 2 C ‘ ( x ) = 1 ,

откуда C ( x ) = ∫ d x = x + C 1 , где C 1 – произвольная постоянная.

Это значит, что y = C ( x ) · ( x 2 + 1 ) = ( x + C 1 ) · ( x 2 + 1 ) — общее решение неоднородного уравнения.

Теперь приступим к отысканию частного решения, которое будет удовлетворять начальному условию y ( 1 ) = 3 .

Так как y = ( x + C 1 ) · ( x 2 + 1 ) , то y ( 1 ) = ( 1 + C 1 ) · ( 1 2 + 1 ) = 2 · ( 1 + C 1 ) . Обратившись к начальному условию, получаем уравнение 2 · ( 1 + C 1 ) = 3 , откуда C 1 = 1 2 . Следовательно, искомое решение задачи Коши имеет вид y = x + 1 2 · ( x 2 + 1 )

Теперь рассмотрим еще один метод решения линейных неоднородных дифференциальных уравнений y ‘ + P ( x ) · y = Q ( x ) .

Еще один метод решения ЛНДУ первого порядка

Мы можем представить неизвестную функцию как произведение y = u ⋅ v , где u и v – функции аргумента x .

Мы можем подставить эту функцию в ЛНДУ первого порядка. Имеем:

y ‘ + P ( x ) · y = Q ( x ) ( u · v ) ‘ + P ( x ) · u · v = Q ( x ) u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x )

Если найти такое v , чтобы оно было ненулевым частным решением дифференциального уравнения v ‘ + P ( x ) · v = 0 , то u можно будет определить из уравнения с разделяющимися переменными u ‘ · v = Q ( x ) .

Рассмотрим этот алгоритм решения на предыдущем примере. Это позволит нам сосредоточиться на главном, не отвлекаясь на второстепенные детали.

Найдите общее решение линейного неоднородного дифференциального уравнения y ‘ — 2 x y 1 + x 2 = 1 + x 2 .

Пусть y = u ⋅ v , тогда
y ‘ — 2 x y x 2 + 1 = x 2 + 1 ⇔ ( u · v ) — 2 x · u · v x 2 + 1 = x 2 + 1 u ‘ · v + u · v ‘ — 2 x · u · v x 2 + 1 = x 2 + 1 u ‘ · v + u · v ‘ — 2 x · v x 2 + 1 = x 2 + 1

Находим такое v , отличное от нуля, чтобы выражение в скобках обращалось в ноль. Иными словами, находим частное решение дифференциального уравнения v ‘ — 2 x · v x 2 + 1 = 0 .
v ‘ — 2 x · v x 2 + 1 = 0 ⇔ d v d x = 2 x · v x 2 + 1 ⇒ d v v = 2 x d x x 2 + 1 ⇔ d v v = d ( x 2 + 1 ) x 2 + 1 ∫ d v v = ∫ d ( x 2 + 1 ) x 2 + 1 ln v + C 1 = ln ( x 2 + 1 ) + C 2

Возьмем частное решение v = x 2 + 1 , соответствующее C 2 – С 1 = 0 .

Для этого частного решения имеем
u ‘ · v + u · v ‘ — 2 x · v x 2 + 1 = x 2 + 1 ⇔ u ‘ · ( x 2 + 1 ) + u · 0 = x 2 + 1 ⇔ u ‘ = 1 ⇔ u = x + C

Следовательно, общее решение исходного линейного неоднородного дифференциального уравнения есть y = u · v = ( x + C ) · ( x 2 + 1 )

Ответы в обоих случаях совпадают. Это значит, что оба метода решения, которые мы привели в статье, равнозначны. Выбирать, какой из них применить для решения задачи, вам.

Линейные дифференциальные уравнения первого порядка

Дифференциальное уравнение называется линейным, если в нём функция и все её производные содержатся только в первой степени, отсутствуют и их произведения.

Общий вид линейного дифференциального уравнения первого порядка таков:

,

где и — непрерывные функции от x.

Как решить линейное дифференциальное уравнение первого порядка?

Интегрирование такого уравнения можно свести к интегрированию двух двух дифференциальных уравнений первого порядка с разделяющимися переменными. Великие математики доказали, что нужную функцию, то есть решение уравнения, можно представить в виде произведения двух неизвестных функций u(x) и v(x). Пусть y = uv, тогда по правилу дифференцирования произведения функций

и линейное дифференциальное уравнения первого порядка примет вид

. (*)

Выберем функцию v(x) так, чтобы в этом уравнении выражение в скобках обратилось в нуль:

,

то есть в качестве функции v берётся одно из частных решений этого уравнения с разделяющимися переменными, отличное от нуля. Разделяя в уравнении переменные и выполняя затем его почленное интегрирование, найдём функцию v. Так как функция v — решение уравнения, то её подстановка в уравнение даёт

.

Таким образом, для нахождения функции u получили дифференциальное уравнение первого порядка с разделяющимися переменными. Найдём функцию u как общее решение этого уравнения.

Теперь можем найти решение исходного линейного дифференциального уравнения первого порядка. Оно равно произведению функций u и v, т. е. y = uv. u и v уже нашли.

Пример 1. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Как было показано в алгоритме, y = uv. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

и, интегрируя находим u:

Теперь можно записать общее решение данного линейного дифференциального уравнения первого порядка:

Как видим, всё решение выполняется точным следованием алгоритму, приведённому в начале статьи. Меняются лишь виды функций в уравнениях. Степени, корни, экспоненты и т.д. Это чтобы алгоритм отпечатался в памяти и был готов к разным случаям, которые только могут быть на контрольной и экзамене. А кому стало скучно, наберитесь терпения: впереди ещё примеры с интегрированием по частям!

Важное замечание. При решении заданий не обойтись без преобразований выражений. Для этого требуется открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Пример 2. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

.

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные:

и, интегрируя находим u:

Теперь можно записать общее решение данного линейного дифференциального уравнения первого порядка:

В следующем примере — обещанная экспонента.

Пример 3. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находимu:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Любители острых ощущений дождались примера с интегрированием по частям. Таков следующий пример.

Пример 4. Решить линейное дифференциальное уравнение первого порядка

.

Решение. В этом случае сначала нужно добиться, чтобы производная «игрека» ни на что не умножалась. Для этого поделим уравнение почленно на «икс» и получим

.

Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируем по частям.

В интеграле , .

Тогда .

Интегрируем и находим u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

И уж совсем странной статья о дифференциальных уравнениях была бы без примера с тригонометрическими функциями.

Пример 5. Решить линейное дифференциальное уравнение первого порядка

.

Решение. Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находим u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

В последних двух примерах требуется найти частное решение уравнения.

Пример 6. Найти частное решение линейного дифференциальное уравнение первого порядка

при условии .

Решение. Чтобы производная «игрека» ни на что не умножалась, разделим уравнение почленно на и получим

.

Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находим u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Найдём частное решение уравнения. Для этого в общее решение подставим и и найдём значение C:

Подставляем значение C и получаем частное решение данного линейного дифференциального уравнения первого порядка:

.

Пример 7. Найти частное решение линейного дифференциального уравнения первого порядка

при условии .

Перенесём функцию «игрека» в левую часть и получим

.

Подставляя выражения для и y в уравнение вида (*), получим

(* *).

Выберем функцию v(x) так, чтобы выполнялось равенство

или .

После разделения переменных это уравнение принимает вид

.

Почленное интегрирование даёт

Подставив найденное значение функции v в равенство (* *), получим

.

Это уравнение с разделяющимися переменными для нахождения функции u. Разделяем переменные и, интегрируя, находим u:

.

Первый интеграл равен , второй находим интегрированием по частям.

В нём , .

Тогда , .

Находим второй интеграл:

.

В результате получаем функцию u:

Записываем общее решение данного линейного дифференциального уравнения первого порядка:

Найдём частное решение уравнения. Для этого в общее решение подставим и и найдём значение C:

Подставляем значение C и получаем частное решение данного линейного дифференциального уравнения первого порядка:

.

Выводы. Алгоритм решения линейных дифференциальных уравнений первого порядка достаточно однозначен. Трудности чаще всего возникают при интегрировании и это означает, что следует повторить этот обширный раздел математического анализа. Кроме того, что особенно видно из примеров ближе к концу статьи, очень важно владеть приёмами действий со степенями и дробями, а это школьные темы, и если они подзабыты, то их тоже следует повторить. Совсем простых «демо»-примеров ждать на контрольной и на экзамене не стоит.

Линейные неоднородные дифференциальные уравнения первого порядка.

Линейные неоднородные дифференциальные уравнения первого порядка .

Как пример линейного неоднородного дифференциального уравнения первого порядка можно привести:

.

Для решения ЛНДУ пользуются методом вариации произвольной постоянной. Кроме того, есть метод, который основан на представлении искомой функции y в как произведение:


источники:

http://function-x.ru/differential_equations4.html

http://www.calc.ru/Lineynyye-Neodnorodnyye-Differentsialnyye-Uravneniya-Pervogo.html