Как решить однородное уравнение второй степени

Системы с нелинейными уравнениями

Нелинейные уравнения с двумя неизвестными
Системы из двух уравнений, одно из которых линейное
Однородные уравнения второй степени с двумя неизвестными
Системы из двух уравнений, одно из которых однородное
Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное
Примеры решения систем уравнений других видов

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A – некоторое множество пар чисел (x ; y) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

z = f (x , y) ,(1)

причем в записи (1) числа x и y называют аргументами функции , а число z – значением функции , соответствующим паре аргументов (x ; y) .

Определение 2 . Нелинейным уравнением с двумя неизвестными x и y называют уравнение вида

f (x , y) = 0 ,(2)

где f (x , y) – любая функция, отличная от функции

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

x 2 – 4xy + 6y 2 –
– 12 y +18 = 0 .
(3)

Решение . Преобразуем левую часть уравнения (3):

Таким образом, уравнение (3) можно переписать в виде

(x – 2y) 2 + 2(y – 3) 2 = 0 .(4)

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Пример 2 . Решить уравнение

sin (xy) = 2 .(5)

вытекает, что уравнение (5) решений не имеет.

Ответ : Решений нет.

Пример 3 . Решить уравнение

ln (x – y) = 0 .(6)

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

где y – любое число.

Системы из двух уравнений, одно из которых линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 4 . Решить систему уравнений

(7)

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Таким образом, решениями системы (7) являются две пары чисел

и

Ответ : (– 1 ; 9) , (9 ; – 1)

Однородные уравнения второй степени с двумя неизвестными

Определение 5 . Однородным уравнением второй степени с двумя неизвестными x и y называют уравнение вида

где a , b , c – заданные числа.

Пример 5 . Решить уравнение

3x 2 – 8xy + 5y 2 = 0 .(8)

Решение . Для каждого значения y рассмотрим уравнение (8) как квадратное уравнение относительно неизвестного x . Тогда дискриминант D квадратного уравнения (8) будет выражаться по формуле

откуда с помощью формулы для корней квадратного уравнения найдем корни уравнения (8):

Ответ . Решениями уравнения (8) являются все пары чисел вида

( y ; y) или

где y – любое число.

Следствие . Левую часть уравнения (8) можно разложить на множители

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное, имеют вид

где a , b , c – заданные числа, а g(x , y) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

(9)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – y , из второго уравнения системы (9) получаем уравнение

корнями которого служат числа y1 = 2 , y2 = – 2 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 2) , (2 ; – 2) .

,

из второго уравнения системы (9) получаем уравнение

которое корней не имеет.

Ответ : (– 2 ; 2) , (2 ; – 2)

Системы из двух уравнений, сводящиеся к системам, в которых одно из уравнений однородное

Пример 7 . Решить систему уравнений

(10)

Решение . Совершим над системой (10) следующие преобразования:

  • второе уравнение системы оставим без изменений;
  • к первому уравнению, умноженному на 5 , прибавим второе уравнение, умноженное на 3 , и запишем полученный результат вместо первого уравнения системы (10).

В результате система (10) преобразуется в равносильную ей систему (11), в которой первое уравнение является однородным уравнением:

(11)

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = – 5y , из второго уравнения системы (11) получаем уравнение

которое корней не имеет.

,

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y1 = 3 , y2 = – 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (– 2 ; 3) , (2 ; – 3) .

Ответ : (– 2 ; 3) , (2 ; – 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

(13)

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

(14)

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования:

  • первое уравнение системы оставим без изменений;
  • из второго уравнения вычтем первое уравнение и заменим второе уравнение системы на полученную разность.

В результате система (14) преобразуется в равносильную ей систему

из которой находим

(15)

Воспользовавшись формулами (13) и (15), перепишем исходную систему (12) в виде

(16)

У системы (16) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное u через неизвестное v и подставить это выражение во второе уравнение системы:

Следовательно, решениями системы (16) являются две пары чисел

Из формул (13) вытекает, что , поэтому первое решение должно быть отброшено. В случае u2 = 5, v2 = 2 из формул (15) находим значения x и y :

Определение 6 . Решением системы из двух уравнений с тремя неизвестными называют тройку чисел (x ; y ; z) , при подстановке которых в каждое уравнение системы получается верное равенство.

Пример 9 . Решить систему из двух уравнений с тремя неизвестными

(17)

Решение . У системы (17) первое уравнение – линейное, поэтому мы можем выразить из него неизвестное z через неизвестные x и y и подставить это выражение во второе уравнение системы:

(18)

Перепишем второе уравнение системы (18) в другом виде:

Поскольку квадрат любого числа неотрицателен, то выполнение последнего равенства возможно лишь в случае x = 4, y = 4 .

Ответ : (4 ; 4 ; – 4)

Замечание . Рекомендуем посетителю нашего сайта, интересующемуся методами решения систем уравнений, ознакомиться также c разделом справочника «Системы линейных уравнений» и нашим учебным пособием «Системы уравнений».

Как решить однородное уравнение второй степени

Однородное тригонометрическое уравнение – это уравнение двух видов:

a sin x + b cos x = 0 (однородное уравнение первой степени)

a sin 2 x + b sin x cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Алгоритм решения однородного уравнения первой степени a sin x + b cos x = 0:

1) разделить обе части уравнения на cos x

2) решить получившееся выражение

Пример : Решим уравнение 2 sin x – 3 cos x = 0.

Разделим обе части уравнения на cos x:

Алгоритм решения однородного уравнения второй степени a sin 2 x + b sin x cos x + c cos 2 x = 0.

Условие: в уравнении должно быть выражение вида a sin 2 x.
Если его нет, то уравнение решается методом разложения на множители.

1) Разделить обе части уравнения на cos 2 x

2) Ввести новую переменную z, заменяющую tg x (z = tg x)

3) Решить получившееся уравнение

Пример : Решить уравнение sin 2 x – 3 sin x cos x + 2 cos 2 x = 0.

Разделим обе части уравнения на cos 2 x:

tg 2 x – 3 tg x + 2 = 0.

Вместо tg x введем новую переменную z и получим квадратное уравнение:

Значит:
либо tg x = 1,
либо tg x = 2.

Сначала найдем x при tg x = 1:
x = arctg 1 + πn.
x = π/4 + πn.

Теперь найдем x при tg x = 2:
x = arctg 2 + πn.

Ответ : x = π/4 + πn; x = arctg 2 + πn.

Однородные тригонометрические уравнения

Разделы: Математика

«Величие человека в его способности мыслить».
Блез Паскаль.

Цели урока:

1) Обучающие – познакомить учащихся с однородными уравнениями, рассмотреть методы их решения, способствовать формированию навыков решения ранее изученных видов тригонометрических уравнений.

2) Развивающие – развивать творческую активность учащихся, их познавательную деятельность, логическое мышление, память, умение работать в проблемной ситуации, добиваться умения правильно, последовательно, рационально излагать свои мысли, расширить кругозор учащихся, повышать уровень их математической культуры.

3) Воспитательные – воспитывать стремление к самосовершенствованию, трудолюбие, формировать умение грамотно и аккуратно выполнять математические записи, воспитывать активность, содействовать побуждению интереса к математике.

Тип урока: комбинированный.

Оборудование:

  1. Перфокарты для шести учащихся.
  2. Карточки для самостоятельной и индивидуальной работы учащихся.
  3. Стенды «Решение тригонометрических уравнений», «Числовая единичная окружность».
  4. Электрифицированные таблицы по тригонометрии.
  5. Презентация к уроку (Приложение 1).

Ход урока

1. Организационный этап (2 минуты)

Взаимное приветствие; проверка подготовленности учащихся к уроку (рабочее место, внешний вид); организация внимания.

Учитель сообщает учащимся тему урока, цели (слайд 2) и поясняет, что во время урока будет использоваться тот раздаточный материал, который находится на партах.

2. Повторение теоретического материала (15 минут)

Задания на перфокартах (6 человек). Время работы по перфокартам – 10 мин (Приложение 2)

Решив задания, учащиеся узнают, где применяются тригонометрические вычисления. Получаются такие ответы: триангуляция (техника, позволяющая измерять расстояния до недалеких звезд в астрономии), акустика, УЗИ, томография, геодезия, криптография.

  1. Какие уравнения называются тригонометрическими?
  2. Какие виды тригонометрических уравнений вы знаете?
  3. Какие уравнения называются простейшими тригонометрическими уравнениями?
  4. Какие уравнения называются квадратными тригонометрическими?
  5. Сформулировать определение арксинуса числа а.
  6. Сформулировать определение арккосинуса числа а.
  7. Сформулировать определение арктангенса числа а.
  8. Сформулировать определение арккотангенса числа а.

Игра «Отгадайте зашифрованное слово»

Когда-то Блез Паскаль сказал, что математика – наука настолько серьёзная, что нельзя упускать случая, сделать её немного более занимательной. Поэтому я предлагаю поиграть. Решив примеры, определите последовательность цифр, по которой составлено зашифрованное слово. По латыни это слово означает «синус». (слайд 3)

4) tg (arc cos (1/2))

Ответ: «Изгиб»

Игра «Рассеянный математик»

На экран проектируются задания для устной работы:

Проверьте правильность решения уравнений. (правильный ответ появляется на слайде после ответа учащегося). (слайд 4)

Ответы с ошибками

Правильные ответы

х = (-1)n arcsin1/3+ 2πn

cos x = 1/2, х = ±π/3+2πn

Проверка домашнего задания.

Преподаватель установливает правильность и осознанность выполнения домашнего задания всеми учащимися; выявляет пробелы в знаниях; совершенствует знания, умения и навыки учащихся в области решения простейших тригонометрических уравнений.

1 уравнение. Учащийся комментирует решение уравнения, строки которого появляются на слайде в порядке следования комментария). (слайд 6)

2 уравнение. Решение записывается учащимся на доске.

2 sin 2 x + 3 cosx = 0.

3. Актуализация новых знаний (3 минуты)

Учащиеся по просьбе учителя вспоминают способы решения тригонометрических уравнений. Они выбирают те уравнения, которые уже умеют решать, называют способ решения уравнения и получившийся результат. Ответы появляются на слайде. (слайд 7) .

Введение новой переменной:

№1. 2sin 2 x – 7sinx + 3 = 0.

Пусть sinx = t, тогда:

Разложение на множители:

№2. 3sinx cos4x – cos4x = 0;

сos4x(3sinx – 1) = 0;

cos4x = 0 или 3 sinx – 1 = 0; …

№3. 2 sinx – 3 cosx = 0,

№4. 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Преподаватель: Последние два вида уравнений вы решать еще не умеете. Оба они одного вида. Их нельзя свести к уравнению относительно функций sinx или cosx. Называются однородными тригонометрическими уравнениями. Но только первое – однородное уравнение первой степени, а второе – однородное уравнение второй степени. Сегодня на уроке предстоит познакомиться с такими уравнениями и научиться их решать.

4. Объяснение нового материала (25 минут)

Преподаватель дает учащимся определения однородных тригонометрических уравнений, знакомит со способами их решения.

Определение. Уравнение вида a sinx + b cosx =0, где a ≠ 0, b ≠ 0 называется однородным тригонометрическим уравнением первой степени. (слайд 8)

Примером такого уравнения является уравнение №3. Выпишем общий вид уравнения и проанализируем его.

а sinx + b cosx = 0.

Если cosx = 0, то sinx = 0.

– Может ли получиться такая ситуация?

– Нет. Получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cosx:

tgx = –b / а – простейшее тригонометрическое уравнение.

Вывод: Однородные тригонометрические уравнения первой степени решаются делением обеих частей уравнения на cosx (sinx).

Например: 2 sinx – 3 cosx = 0,

х = arctg (3/2) +πn, n ∈Z.

Определение. Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 , где a ≠ 0, b ≠ 0, c ≠ 0 называется тригонометрическим уравнением второй степени. (слайд 8)

Примером такого уравнения является уравнение №4. Выпишем общий вид уравнения и проанализируем его.

a sin 2 x + b sinx cosx + c cos 2 x = 0.

Если cosx = 0, то sinx = 0.

Опять получили противоречие основному тригонометрическому тождеству.

Значит, cosx ≠ 0. Выполним почленное деление на cos 2 x:

а tg 2 x + b tgx + c = 0 – уравнение, сводящееся к квадратному.

Вывод: Однородные тригонометрические уравнения второй степени решаются делением обеих частей уравнения на cos 2 x (sin 2 x).

Например: 3 sin 2 x – 4 sinx cosx + cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то

3tg 2 x – 4 tgx + 1 = 0 (Предложить ученику выйти к доске и дорешать уравнение самостоятельно).

Замена: tgx = у. 3у 2 – 4 у + 1 = 0

tgx = 1 или tgx = 1/3

x = arctg (1/3) + πn, n ∈Z.

х = arctg1 + πn, n ∈Z.

5. Этап проверки понимания учащимися нового материала (1 мин.)

Выберите лишнее уравнение:

sinx = 2cosx; 2sinx + cosx = 2;

√3sinx + cosx = 0; sin 2 x – 2 sinx cosx + 4cos 2 x = 0;

4cosx + 5sinx = 0; √3sinx – cosx = 0.

6. Закрепление нового материала (24 мин).

Учащиеся вместе с отвечающими у доски решают уравнения на новый материал. Задания написаны на слайде в виде таблицы. При решении уравнения открывается соответствующая часть картинки на слайде. В результате выполнения 4-х уравнений перед учащимися открывается портрет математика, оказавшего значительное влияние на развитие тригонометрии. (ученики узнают портрет Франсуа Виета – великого математика, внесшего большой вклад в тригонометрию, открывшего свойство корней приведенного квадратного уравнения и занимавшегося криптографией). (слайд 10)

1) √3sinx + cosx = 0,

х = arctg (–1/√3) + πn, n ∈Z.

2) sin 2 x – 10 sinx cosx + 21cos 2 x = 0.

Т.к. cos 2 x ≠ 0, то tg 2 x – 10 tgx + 21 = 0

у 2 – 10 у + 21 = 0

tgx = 7 или tgx = 3

х = arctg7 + πn, n ∈Z

х = arctg3 + πn, n ∈Z

3) sin 2 2x – 6 sin2x cos2x + 5cos 2 2x = 0.

Т.к. cos 2 2x ≠ 0, то 3tg 2 2x – 6tg2x +5 = 0

tg2x = 5 или tg2x = 1

2х = arctg5 + πn, n ∈Z

х = 1/2 arctg5 + π/2 n, n ∈Z

2х = arctg1 + πn, n ∈Z

х = π/8 + π/2 n, n ∈Z

4) 6sin 2 x + 4 sin(π-x) cos(2π-x) = 1.

6sin 2 x + 4 sinx cosx = 1.

6sin 2 x + 4 sinx cosx – sin 2 x – cos 2 x = 0.

5sin 2 x + 4 sinx cosx – cos 2 x = 0.

Т.к. cos 2 x ≠0, то 5tg 2 x + 4 tgx –1 = 0

tg x = 1/5 или tg x = –1

х = arctg1/5 + πn, n ∈Z

х = arctg(–1) + πn, n ∈Z

Дополнительно (на карточке):

Решить уравнение и, выбрав один вариант из четырех предложенных, отгадать имя математика, который вывел формулы приведения:

2sin 2 x – 3 sinx cosx – 5cos 2 x = 0.

Варианты ответов:

х = arctg2 + 2πn, n ∈Z х = –π/2 + πn, n ∈Z – П.Чебышев

х = arctg 12,5 + 2πn, n ∈Z х = –3π/4 + πn, n ∈Z – Евклид

х = arctg 5 + πn, n ∈Z х = –π/3 + πn, n ∈Z – Софья Ковалевская

х = arctg2,5 + πn, n ∈Z х = –π/4 + πn, n ∈Z – Леонард Эйлер

Правильный ответ: Леонард Эйлер.

7. Дифференцированная самостоятельная работа ( 8 мин.)

Великий математик и философ более 2500 лет назад подсказал способ развития мыслительных способностей. «Мышление начинается с удивления» – сказал он. В правильности этих слов мы сегодня неоднократно убеждались. Выполнив самостоятельную работу по 2-м вариантам, вы сможете показать, как усвоили материал и узнать имя этого математика. Для самостоятельной работы используйте раздаточный материал, который находится у вас на столах. Вы можете сами выбрать одно из трех предложенных уравнений. Но помните, что решив уравнение, соответствующее желтому цвету, вы сможете получить только «3»,решив уравнение, соответствующее зеленому цвету – «4», красному цвету – «5». (Приложение 3)

Какой бы уровень сложности не выбрали учащиеся, после правильного решения уравнения у первого варианта получается слово «АРИСТ», у второго – «ОТЕЛЬ». На слайде получается слово: «АРИСТ—ОТЕЛЬ». (слайд 11)

Листочки с самостоятельной работой сдаются на проверку. (Приложение 4)

8. Запись домашнего задания (1 мин)

Д/з: §7.17. Составить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени (используя для составления теорему Виета). (слайд 12)

9. Подведение итогов урока, выставление оценок (2 минуты)

Учитель еще раз обращает внимание, на те типы уравнений и те теоретические факты, которые вспоминали на уроке, говорит о необходимости выучить их.

Учащиеся отвечают на вопросы:

  1. С каким видом тригонометрических уравнений мы познакомились?
  2. Как решаются эти уравнения?

Учитель отмечает наиболее успешную работу на уроке отдельных учащихся, выставляет отметки.


источники:

http://raal100.narod.ru/index/0-301

http://urok.1sept.ru/articles/586916