Как решить систему уравнений комплексных чисел

Как решить комплексное уравнение по математике

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Для наглядности решим такое задание:

Вычислить \[ (z_1\cdot z_2)^<10>,\] если \[z_1=-1+\sqrt 3i, z_2=\frac<1><4>(\cos 30^<\circ>+i\sin30^<\circ>).\]

В первую очередь обратим внимание на то, что одно число представлено в алгебраической, другое — в тригонометрической форме. Его необходимо упростить и привести к следующему виду

Выражение \[z_1\cdot z_2^10\] говорит о том, что в первую очередь делаем умножение и возведение в 10-ю степень по формуле Муавра. Эта формула сформулирована для тригонометрической формы комплексного числа. Получим:

Придерживаясь правил умножения комплексных чисел в тригонометрической форме, сделаем следующее:

\[z_1=\begin z_1 \end\cdot(\cos \varphi _1+i\sin\varphi _1), z_2=\begin z_2 \end\cdot(\cos \varphi _2+i\sin\varphi _2),\]

\[z_1 \cdot z_2=\begin z_1 \end\cdot\begin z_2 \end\cdot (\cos (\varphi _1+\varphi _2)+i\sin(\varphi _1+\varphi _2))\]

Далее применяем формулу Муавра \[ z^n=\begin z \end^n\cdot(\cos(n\varphi)+i\sin(n\varphi),\] которая является следствием указанного выше правила:

Делая дробь \[\frac<25><3>=8\frac<1><3>\] правильной, приходим к выводу, что можно «скрутить» 4 оборота \[(8\pi рад.):\]

Данное уравнение можно решить еще одним способом, который сводится к тому, чтобы привести 2 -е число в алгебраическую форму, после чего выполнить умножение в алгебраической форме, перевести результат в тригонометрическую форму и применить формулу Муавра:

Где можно решить систему уравнений с комплексными числами онлайн?

Решить систему уравнений вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Как решить систему уравнений комплексных чисел

. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i — это комплексная единица (после того как ввели уравнение и нажали кнопку «решить»), нажимаете кнопку под формой «Обновить» и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке

© Контрольная работа РУ — примеры решения задач

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:


где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = <0, 1, 2, 3, …n-1 >.

Пример 1. Найти все корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:


Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Пример 2. Найти все корни уравнения

Найдем дискриминант уравнения:


Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Найдем корни уравнения:


Ответ:

Пример 3. Найти все корни уравнения

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = <0, 1, 2, 3>. Найдем модуль комплексного числа:

Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Пример 4. Найти корни уравнения


Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:


Подставим найденные значения в формулу:

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.


источники:

http://www.kontrolnaya-rabota.ru/diario/96-reshenie-uravnenij-kompleksnymi-chislami/

http://matematyka.ru/reshenie-uravnenij-s-kompleksny-mi-chislami/