Как решить систему уравнений с дробью 7 класс

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

    \(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел \((x_0;y_0)\).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

    Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на \(8\), чтобы найти \(y\).

    Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

    Постройте графики этих функций. Как? Можете прочитать здесь .

  1. Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    Алгебра. Урок 4. Уравнения, системы уравнений

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Линейные уравнения

    Линейные уравнения

    Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

    Примеры линейных уравнений:

    1. 3 x = 2
    1. 2 7 x = − 5

    Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

    Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

    Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

    Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

    Примеры решения линейных уравнений:

    1. 2 x + 1 = 2 ( x − 3 ) + 8

    Это линейное уравнение, так как переменная стоит в первое степени.

    Попробуем преобразовать его к виду a x = b :

    Для начала раскроем скобки:

    2 x + 1 = 4 x − 6 + 8

    В левую часть переносятся все слагаемые с x , в правую – числа:

    Теперь поделим левую и правую часть на число ( -2 ) :

    − 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

    Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

    Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

    x 2 + 3 x − 8 = x − 1

    Это уравнение не является линейным уравнением.

    Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

    1. 2 x − 4 = 2 ( x − 2 )

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 2 x = − 4 + 4

    И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

    Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

    2 x − 4 = 2 x − 16

    2 x − 2 x = − 16 + 4

    В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

    Квадратные уравнения

    Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

    Алгоритм решения квадратного уравнения:

    1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
    2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
    3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
    4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
    5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
    6. Если D 0, решений нет: x ∈ ∅

    Примеры решения квадратного уравнения:

    1. − x 2 + 6 x + 7 = 0

    a = − 1, b = 6, c = 7

    D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

    D > 0 – будет два различных корня:

    x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

    Ответ: x 1 = − 1, x 2 = 7

    a = − 1, b = 4, c = − 4

    D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

    D = 0 – будет один корень:

    x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

    a = 2, b = − 7, c = 10

    D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

    D 0 – решений нет.

    Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

    Разложение квадратного трехчлена на множители

    Квадратный трехчлен можно разложить на множители следующим образом:

    a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

    где a – число, коэффициент перед старшим коэффициентом,

    x – переменная (то есть буква),

    x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

    Если квадратное уравнение имеет только один корень , то разложение выглядит так:

    a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

    Примеры разложения квадратного трехчлена на множители:

    1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

    − x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

    1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

    − x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

    Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

    • c = 0 ⇒ a x 2 + b x = x ( a x + b )
    • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

    Дробно рациональные уравнения

    Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

    Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

    Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

    ОДЗ – область допустимых значений переменной.

    В выражении вида f ( x ) g ( x ) = 0

    ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

    Алгоритм решения дробно рационального уравнения:

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .
    2. Выписать ОДЗ: g ( x ) ≠ 0.
    3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
    4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Пример решения дробного рационального уравнения:

    Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

    Решение:

    Будем действовать в соответствии с алгоритмом.

    1. Привести выражение к виду f ( x ) g ( x ) = 0 .

    Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

    x 2 − 4 2 − x − 1 \ 2 − x = 0

    x 2 − 4 2 − x − 2 − x 2 − x = 0

    x 2 − 4 − ( 2 − x ) 2 − x = 0

    x 2 − 4 − 2 + x 2 − x = 0

    x 2 + x − 6 2 − x = 0

    Первый шаг алгоритма выполнен успешно.

    Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

    1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

    x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

    a = 1, b = 1, c = − 6

    D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

    D > 0 – будет два различных корня.

    x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

    1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

    Корни, полученные на предыдущем шаге:

    Значит, в ответ идет только один корень, x = − 3.

    Системы уравнений

    Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

    Пример системы уравнений

    Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

    Существует два метода решений систем линейных уравнений:

    1. Метод подстановки.
    2. Метод сложения.

    Алгоритм решения системы уравнений методом подстановки:

    1. Выразить из любого уравнения одну переменную через другую.
    2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    3. Решить уравнение с одной неизвестной.
    4. Найти оставшуюся неизвестную.

    Решить систему уравнений методом подстановки

    Решение:

    1. Выразить из любого уравнения одну переменную через другую.
    1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
    1. Решить уравнение с одной неизвестной.

    3 ( 8 − 2 y ) − y = − 4

    y = − 28 − 7 = 28 7 = 4

    1. Найти оставшуюся неизвестную.

    x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

    Ответ можно записать одним из трех способов:

    Решение системы уравнений методом сложения.

    Метод сложения основывается на следующем свойстве:

    Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

    Решить систему уравнений методом сложения

    Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

    Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

    ( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

    − 3 x − 6 y + 3 x − y = − 24 − 4

    y = − 28 − 7 = 28 7 = 4

    Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

    Ответ можно записать одним из трех способов:

    Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

    Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули

    В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.

    Как решать уравнения алгебра 7 класс

    Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.

    Рассмотрим несколько примеров пошагового решения линейных уравнений.

    Пример 1.
    6x + 24 = 0

    Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).

    Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.

    Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).

    Пример 2.
    9 + 16x = 41 + 14x

    Это уравнение более сложное. Здесь важно запомнить несколько моментов:

    • числа без х переносятся в левую часть, а с х — в правую;
    • при переносе знаки меняют.

    Пример 3.
    7(10 — 4x) + 5x = 12 — 3(5x + 2)

    1. Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
    2. Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
    3. Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
    4. Подсчитываем результат с обеих сторон.
    5. Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.

    В рассмотренных уравнениях корень точно определён. Так получается не всегда.

    Пример 4.

    Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.

    В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).

    Как решать систему уравнений алгебра 7 класс

    Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.

    метод подстановки

    Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.

    Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.

    Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).

    В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.

    Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).

    Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).

    Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.

    метод сложения

    Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.

    графический метод

    У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:

    1. Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
    2. Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
    3. Отмечаем на графике соответствующие прямые, подписываем их название.
    4. на месте пересечения получившихся прямых ставим точку — это будет решение.
    5. Точка имеет координаты (1; 5).

    На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.

    Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.

    Как решать дроби 7 класс

    Дроби можно разделить на 2 основных вида:

    Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.

    Для начала рассмотрим решение примеров с десятичными дробями.

    Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.

    Примеры решения обыкновенных дробей.

    • при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
    • при умножении пишем дроби под одной чертой, сокращаем.
    • при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.

    Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).

    Примеры 7 класс как решать

    Теперь закрепим решение дробей на примерах.

    Решение примера, представленного ниже:

    1. Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
    2. Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
    3. Остается от 10,4 отнять 9,3. В итоге вышло 1,1.

    Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.

    Чтобы верно решить следующий пример, нужно:

    • точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
    • Умножить десятичные дроби столбиком, не забыть поставить запятую;
    • деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
    • сложили числа.

    Как решать задачи алгебра 7 класс

    Задачи решаются путем составления уравнений.

    Другие примеры задач с подробными решениями в видео-материалах.

    Как решать функции алгебра 7 клас с

    Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).

    • y(x) = 8x
    • y(x) = −3x — 62
    • y(x) = x−1 + 18

    Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.

    Как решать степени алгебра 7 класс

    Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).

    Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.

    Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.

    При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.

    Рассмотрим несколько примеров со степенями.

    Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.

    Алгебра модули как решать

    Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.

    Перейдем к простым примерам.

    Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.

    Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.

    Другие примеры описаны в видео.

    Об Авторе

    Смотрите также

    Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток

    Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы

    Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки

    2 комментария

    Спасибо большое очень помогли.

    Огромное спасибо!А то учитель неможет нормально тему объяснить


    источники:

    http://epmat.ru/modul-algebra/urok-4-uravneniya-sistemy-uravnenij/

    http://luckclub.ru/kak-reshat-zadaniya-po-algebre-7-klass-uravneniya-primery-drobi-funkcii-stepeni-moduli-kak-nauchitsya-reshat-algebru-7-klass