Как решить тригонометрические и алгебраические уравнения

Способы решения тригонометрических уравнений. 10-й класс

Разделы: Математика

Класс: 10

«Уравнения будут существовать вечно».

Цели урока:

  • Образовательные:
    • углубление понимания методов решения тригонометрических уравнений;
    • сформировать навыки различать, правильно отбирать способы решения тригонометрических уравнений.
  • Воспитательные:
    • воспитание познавательного интереса к учебному процессу;
    • формирование умения анализировать поставленную задачу;
    • способствовать улучшению психологического климата в классе.
  • Развивающие:
    • способствовать развитию навыка самостоятельного приобретения знаний;
    • способствовать умению учащихся аргументировать свою точку зрения;

Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.

1 урок

I. Актуализация опорных знаний

Устно решить уравнения:

1) cosx = 1;
2) 2 cosx = 1;
3) cosx = –;
4) sin2x = 0;
5) sinx = –;
6) sinx = ;
7) tgx = ;
8) cos 2 x – sin 2 x = 0

1) х = 2к;
2) х = ± + 2к;
3) х =± + 2к;
4) х = к;
5) х = (–1) + к;
6) х = (–1) + 2к;
7) х = + к;
8) х = + к; к Z.

II. Изучение нового материала

– Сегодня мы с вами рассмотрим более сложные тригонометрические уравнения. Рассмотрим 10 способов их решения. Далее будет два урока для закрепления, и на следующий урок будет проверочная работа. На стенде «К уроку» вывешены задания, аналогичные которым будут на проверочной работе, надо их прорешать до проверочной работы. (Накануне, перед проверочной работой, вывесить на стенде решения этих заданий).

Итак, переходим к рассмотрению способов решения тригонометрических уравнений. Одни из этих способов вам, наверное, покажутся трудными, а другие – лёгкими, т.к. некоторыми приёмами решения уравнений вы уже владеете.

Четверо учащихся класса получили индивидуальное задание: разобраться и показать вам 4 способа решения тригонометрических уравнений.

(Выступающие учащиеся заранее подготовили слайды. Остальные учащиеся класса записывают основные этапы решения уравнений в тетрадь.)

1 ученик: 1 способ. Решение уравнений разложением на множители

sin 4x = 3 cos 2x

Для решения уравнения воспользуемся формулой синуса двойного угла sin 2 = 2 sin cos
2 sin 2x cos 2x – 3 cos 2x = 0,
cos 2x (2 sin 2x – 3) = 0. Произведение этих множителей равно нулю, если хотя бы один из множителей будет равен нулю.

2x = + к, к Z или sin 2x = 1,5 – нет решений, т.к | sin| 1
x = + к; к Z.
Ответ: x = + к , к Z.

2 ученик. 2 способ. Решение уравнений преобразованием суммы или разности тригонометрических функций в произведение

cos 3x + sin 2x – sin 4x = 0.

Для решения уравнения воспользуемся формулой sin– sin = 2 sin сos

cos 3x + 2 sin сos = 0,

сos 3x – 2 sin x cos 3x = 0,

cos 3x (1 – 2 sinx) = 0. Полученное уравнение равносильно совокупности двух уравнений:

Множество решений второго уравнения полностью входит во множество решений первого уравнения. Значит

Ответ:

3 ученик. 3 способ. Решение уравнений преобразованием произведения тригонометрических функций в сумму

sin 5x cos 3x = sin 6x cos2x.

Для решения уравнения воспользуемся формулой

Ответ:

4 ученик. 4 способ. Решение уравнений, сводящихся к квадратным уравнениям

3 sin x – 2 cos 2 x = 0,
3 sin x – 2 (1 – sin 2 x ) = 0,
2 sin 2 x + 3 sin x – 2 = 0,

Пусть sin x = t, где | t |. Получим квадратное уравнение 2t 2 + 3t – 2 = 0,

. Таким образом . не удовлетворяет условию | t |.

Значит sin x = . Поэтому .

Ответ:

III. Закрепление изученного по учебнику А. Н. Колмогорова

1. № 164 (а), 167 (а) (квадратное уравнение)
2. № 168 (а) (разложение на множители)
3. № 174 (а) (преобразование суммы в произведение)
4. (преобразование произведения в сумму)

(В конце урока показать решение этих уравнений на экране для проверки)

№ 164 (а)

2 sin 2 x + sin x – 1 = 0.
Пусть sin x = t, | t | 1. Тогда
2 t 2 + t – 1 = 0, t = – 1, t= . Откуда

Ответ: –.

№ 167 (а)

3 tg 2 x + 2 tg x – 1 = 0.

Пусть tg x = 1, тогда получим уравнение 3 t 2 + 2 t – 1 = 0.

Ответ:

№ 168 (а )

Ответ:

№ 174 (а )

Ответ:

Решить уравнение:

Ответ:

2 урок (урок-лекция)

IV. Изучение нового материала (продолжение)

– Итак, продолжим изучение способов решения тригонометрических уравнений.

5 способ. Решение однородных тригонометрических уравнений

Уравнения вида a sin x + b cos x = 0, где a и b – некоторые числа, называются однородными уравнениями первой степени относительно sin x или cos x.

sin x – cos x = 0. Разделим обе части уравнения на cos x. Так можно сделать, потери корня не произойдёт, т.к. , если cos x = 0, то sin x = 0. Но это противоречит основному тригонометрическому тождеству sin 2 x + cos 2 x = 1.

Получим tg x – 1 = 0.

Ответ:

Уравнения вида a sin 2 x + bcos 2 x + c sin x cos x = 0 , где a, b, c –некоторые числа, называются однородными уравнениями второй степени относительно sin x или cos x.

sin 2 x – 3 sin x cos x + 2 cos 2 = 0. Разделим обе части уравнения на cos x, при этом потери корня не произойдёт, т.к. cos x = 0 не является корнем данного уравнения.

tg 2 x – 3tg x + 2 = 0.

Пусть tg x = t. D = 9 – 8 = 1.

тогда Отсюда tg x = 2 или tg x = 1.

В итоге x = arctg 2 + , x =

Ответ: arctg 2 + ,

Рассмотрим ещё одно уравнение: 3 sin 2 x – 3 sin x cos x + 4 cos 2 x = 2.
Преобразуем правую часть уравнения в виде 2 = 2 · 1 = 2 · (sin 2 x + cos 2 x). Тогда получим:
3sin 2 x – 3sin x cos x + 4cos 2 x = 2 · (sin 2 x + cos 2 x),
3sin 2 x – 3sin x cos x + 4cos 2 x – 2sin 2 x – 2 cos 2 x = 0,
sin 2 x – 3sin x cos x + 2cos 2 x = 0. (Получили 2 уравнение, которое уже разобрали).

Ответ: arctg 2 + k,

6 способ. Решение линейных тригонометрических уравнений

Линейным тригонометрическим уравнением называется уравнение вида a sin x + b cos x = с, где a, b, c – некоторые числа.

Рассмотрим уравнение sin x + cos x = – 1.
Перепишем уравнение в виде:

Учитывая, что и, получим:

Ответ:

7 способ. Введение дополнительного аргумента

Выражение a cos x + b sin x можно преобразовать:

.

(это преобразование мы уже ранее использовали при упрощении тригонометрических выражений)

Введём дополнительный аргумент – угол такой, что

Тогда

Рассмотрим уравнение: 3 sinx + 4 cosx = 1.

Учтём, что . Тогда получим

0,6 sin x + 0,8 cosx = 1. Введём дополнительный аргумент – угол такой, что , т.е. = arcsin 0,6. Далее получим

Ответ: – arcsin 0,8 + +

8 способ. Уравнения вида Р

Такого рода уравнения удобно решать при помощи введения вспомогательной переменной t = sin x ± cosx. Тогда 1 ± 2 sinx cosx = t 2 .

Решить уравнение: sinx + cosx + 4 sinx cosx – 1 = 0.

Введём новую переменную t = sinx + cosx, тогда t 2 = sin 2 x + 2sin x cos x + cos 2 = 1 + 2 sin x cos x Откуда sin x cos x = . Следовательно получим:

t + 2 (t 2 – 1) – 1 = 0.
2 t 2 + t – 2 – 1 = 0,
2 t 2 + t – 3 = 0..Решив уравнение, получим = 1, =.

sinx + cosx = 1 или sinx + cosx =

Ответ:

9 способ. Решение уравнений, содержащих тригонометрические функции под знаком радикала.

Решить уравнение:

В соответствии с общим правилом решения иррациональных уравнений вида, запишем систему, равносильную исходному уравнению:

Решим уравнение 1 – cos x = 1 – cos 2 x.

1 – cos x = 1 – cos 2 x,
1 – cos x – (1 – cos x) (1 + cos x) = 0,
(1 – cos x) (1 – 1 – cos x) = 0,
– (1 – cos x) cos x = 0.

Условию удовлетворяют только решения

Ответ:

10 способ. Решение уравнений с использованием ограниченности тригонометрических функций y = sin x и y = cos x.

Решить уравнение: sin x + sin 9x = 2.
Так как при любых значениях х sin x 1, то данное уравнение равносильно системе:

Решение системы

Ответ:

V. Итог урока

Таким образом мы сегодня рассмотрели 10 различных способов решения тригонометрических уравнений. Безусловно, многие из приведённых задач могут быть решены несколькими способами.

(Пятерым наиболее подготовленным учащимся , а также всем желающим дать индивидуальное творческое задание: найти различные способы решения тригонометрического уравнения sinx + cosx = 1 )

Домашнее задание: № 164 -170 (в, г).

Как решить тригонометрические и алгебраические уравнения

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Проект «Методы решения тригонометрических уравнений!

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

О бластное государственное автономное

дополнительного профессионального образования

«Белгородский институт развития образования»

Методы решения тригонометрических уравнений

Остапенко Татьяна Ивановна,

учитель математики и физики

МБОУ «Бехтеевская СОШ

Тригонометрические уравнения возникают при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Еще древнегреческие математики, используя элементы тригонометрии для решения прямоугольных треугольников, фактически составляли и решали простейшие тригонометрические уравнения. Исторически учение о решении тригонометрических уравнений формировалось с развитием теории тригонометрических функций, а также черпало из алгебры общие методы их решения.

Цель работы: изучить методы решения тригонометрических уравнений, исследовать применение их к решению уравнений повышенной сложности и задач различного содержания.

Уравнение, содержащее неизвестную величину под знаком триго­нометрической функции, называется тригонометрическим.

Часть тригонометрических уравнений непосредственно решается сведением их к простейшему виду, иногда – с предварительным разложением левой части уравнения на множители, когда правая часть равна нулю. В некоторых случаях удается произвести замену неизвестных таким образом, что тригонометрическое уравнение преобразуется в «удобное» для решения алгебраическое уравнение.

Простейшие тригонометрические уравнения — это уравнения вида

sin x = a, cos x= a, tq x = a, ctq x = a

Каждое из таких уравнений решается по формулам, которые следует знать.

sinx = a, x = (-1) k arcsin a + πk, k Є Z,

arcsin a — угол, содержащийся в промежутке от — π/2 до π/2, синус которого равен a.

cosx= a, x= arccos a +2πk, k Є Z,

arccos a — угол, содержащийся в промежутке от 0 до π, косинус которого равен a .

tq x = a, x = arctq a + πk, k Є Z,

arctg a — угол, содержащийся в промежутке от — π/2 до π/2, тангенс которого равен a .

ctq x = a, x = arcctq a + πk, k Є Z,

arcctg a — угол, содержащийся в промежутке от 0 до π, котангенс которого равен a .

Поскольку каждому значению тригонометрической функции соответствует неограниченное множество углов, то тригонометрическое уравнение, если не сделано каких-либо оговорок, имеет бесчисленное множество решений.

Особо используются частные случаи элементарных тригонометрических уравнений, когда тригонометрические функции равны -1, 0, 1, в которых решение записывается без применения общих формул.

При решении тригонометрических уравнений важную роль играет период тригонометрических функций.

Рекомендации по решению тригонометрических уравнений

Если аргументы функций одинаковые, попробовать получить одинаковые функции, использовав формулы без изменения аргументов.

Если аргументы функций отличаются в два раза, попробовать получить одинаковые аргументы, использовав формулы двойного аргумента.

Если аргументы функций отличаются в четыре раза, попробовать их привести к промежуточному двойному аргументу.

Если есть функции одного аргумента, степени свыше первой, попробовать понизить степень, используя формулы понижения степени или формулы сокращенного умножения.

Если есть сумма одноименных функций первой степени с разными аргументами (вне случаев 2,3), попробовать преобразовать сумму в произведение для появления общего множителя.

Если есть сумма разноимённых функций первой степени с разными аргументами (вне случаев 2, 3), попробовать использовать формулы приведения, получить затем случай 5.

Если в уравнении есть произведение косинусов (синусов) различных аргументов, попробовать свести его к формуле синус двойного аргумента, умножив и разделив это выражение на синус (косинус) подходящего аргумента:

Если в уравнении есть числовое слагаемое (множитель), то его можно представить в виде значений функции угла. Например:

Методы решения тригонометрических уравнений.

При решении тригонометрических уравнений все задачи сводятся к тому, чтобы привести к такому виду, чтобы слева стояла элементарная тригонометрическая функция, а справа – число. После того, как это будет достигнуто, следует найти значение аргумента функции , используя одну из основных формул выражения аргумента через обратные тригонометрические функции.

Алгебраические уравнения относительно одной из тригонометри­ческих функций.

Необходимо произвести замену неизвестных таким образом, чтобы тригонометрическое уравнение преобразовалось в «удобное» для решения алгебраическое уравнение.

1)Решить уравнение 2 sin 2 + 3 sin —2 = 0.

Это уравнение является квадратным относительно sin .

Его корни: sin = , sin =—2. Второе из полученных простейших уравнений не имеет решений, так как Isin l 1, решения первого можно записать так:

+2 k ,π+ 2 k

Если в уравнении встречаются разные тригонометрические функции, то надо заменить их все на какую-нибудь одну, используя три­гонометрические тождества.

2) Решить уравнение 2 sin + cos = 2.

Если в этом уравнении заменим косинус на синус (по аналогии с предыдущими примерами) или наоборот, то по­лучим уравнение с радикалами. Чтобы избежать этого, ис­пользуем формулы, выражающие синус и косинус через тангенс половинного угла:

и .

Делая замену, получаем уравнение относительно: .

Квадратное уравнение имеет корни откуда

Это же уравнение можно решить другим способом, вводя вспомогательный угол:

Пусть. Тогда можно продолжить преобразование: . Получаем простей­шее уравнение т. е. , откуда , или

Ответ получился в другом виде, однако можно проверить, что решения на самом деле совпадают.

Понижение порядка уравнения.

Формулы удвоения позволяют квадраты синуса, косинуса и их произведения заме­нять линейными функциями от синуса и косинуса двойного угла. Такие замены делать выгодно, так как они понижают порядок уравнения.

1)Решить уравнение.

Можно заменить cos 2 на 2 cos 2 —1 и получить квадратное уравнение относительно cos , но проще заменитьна и получить линейное уравнение относительно.

2) Решить уравнение

Подставляя вместо, их выражения через, получаем:

,

2

Использование тригонометрических формул сложения и след­ствий из них.

Иногда в уравнениях встречаются тригонометрические функции кратных углов. В таких случаях нужно использовать формулы сложения.

1) Решить уравнение.

Сложим два крайних слагаемых:, откуда,. Тогда, .

2) Решить уравнение.

Преобразуем произведение синусов в сумму:,

откуда. Полученное уравнение можно ре­шить разными способами: 1) воспользоваться формулами сложения; 2) преобразовать в произведение. Удобнее воспользоваться условием равенства косинусов двух углов и:.

Получаем два уравнения:.

Здесь решения второй серии содержат в себе все решения первой серии. Учитывая это, ответ можно записать короче:.

Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным. Его можно решить, выполнив деление на старшую степень синуса (или косинуса).

Так как, то постоянные слагаемые можно счи­тать членами второй степени.

Пример: .

Заменяя 4 на ,получаем:

Переход к половинному углу

Рассмотрим этот метод на примере:

Пример 6. Решить уравнение: 3 sin x – 5 cos x = 7.

6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

t g ² ( x / 2 ) – 3 t g ( x / 2 ) + 6 = 0 ,

Введение вспомогательного угла

Рассмотрим уравнение вида:

a sin x + b cos x = c ,

где a, b, c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса, а именно: модуль (абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1. Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение принимает вид:

Пример. Решить уравнение:

Приемы решения тригонометрических уравнений, требующих искусственных преобразований.

Умножение обеих частей уравнения на одну и ту же тригонометрическую функцию.

Пример. Решите уравнение

Решение. Раскроем скобк и и преобразуем про­изведение

в сумму:

Умножим обе части уравнения на. Заме­тим, что , не является решением данного уравнения. . Преобразуем левую часть уравнения:

; или тогда

или, т.е.

Исключим из найденных серий корни вида , :

а). Ясно, что — четное число, т.е. , а потому .

б). Tax как , то ,но тогда ,.

Ответ:

Прибавление к обеим частям уравнения одного и того же числа, одной и той же тригонометрической функции.

Пример. Решите уравнение.

Решение. Область определения уравнения задается неравенствами:

При6авим к обеим частям уравнения по единице. ;

Разделим обе части уравнения на и после преобразований получим.

Тогда или .

Из первой серии корней области определения принадлежит только , но это серия корней содержится в серии. Нетрудно убедиться, что входит в область определения. Например:что верно, поскольку левая часть — число четное, а правая — нечетное.

Ответ:.

Тождественные преобразования одной из частей уравнения.

Пример. Решите уравнение .

Решение. Преобразуем левую часть уравнения:

Откуда , тогда или

Легко видеть, что

Ответ:

Использование свойств пропорции.

Необходимо помнить, что применение равенств

и т. д. приводит к изменению области определения урав­нения. Так, у пропорции существует ограничение: , а у пропорции место другое ограничение:.

Пример. Решите уравнение

Решение. Применяя формулу тангенса разности, получим уравнение: . Используем свойство пропорции: ;

Область определения исходного уравнения:

В ходе решения произошло сужение области определения, добавились новые, ограничения: откуда

Проверим, удовлетворяют ли исходному уравне­нию значения

а) -верное равенство,

— решение исходного уравнения.

б) верное равенство.

в)-1 -1 — верное равенство, Ответ:

Решение тригонометрических уравнений методом экстремальных значений.

При решении некоторых тригонометрических уравнений бывает удобно использовать ограничен­ность функций, и. Покажем это на конкретных примерах.

Пример 1. Решите уравнение .

Решение. Так как , то ,, откуда и возможные корни данного уравнения Подставив эти значения в левую часть уравне­ния, получим а последнее равенство возможно только при .

Следовательно, — решение дан­ного уравнения.

Ответ:

Пример 2. Решите уравнение .

Решение. Легко видеть, что и . Следовательно, , но тогда , , откуда , — возможные корни данного

уравнения. Подстановка в данное урав­нение показывает, что эти числа действительно являются его корнями.

Ответ:.

Уравнения, содержащие модуль функции и корень четной степени

При отборе корней нет надобности решать неравенство, достаточно вынести корни на тригонометрический круг и выбрать нужные.

Ответ:

Решение: Учитывая ОДЗ функций, получим:

Ответ:

Уравнения повышенной сложности

2sin 3 x +2sin 2 x cos x – sin x cos 2 x – cos 3 x = 0 | : cos 3 x ≠ 0;

т.к. уравнение однородное тригонометрическое 3-ей степени

2 tg 3 x + 2 tg 2 x – tgx – 1 = 0;

Разложим левую часть на множители, сгруппировав члены, получим

(tg x + 1)(2tg 2 x – 1) = 0;

tgx = -1 х = — + n , n ͼ Z

tgx= ; х = arctg + k, k ͼ Z.

Ответ : — + n , n ͼ Z ; arctg + k, k ͼ Z.

( Сканави М.И. 8.081)

6sin 2 x + sin x cos x – cos 2 x = 2;

4sin 2 x + sin x cos x – 3 cos 2 x = 0; | : cos 2 x ≠ 0;

т. к. уравнение однородное тригонометрическое 2-ой степени

4tg 2 x + tg x – 3 = 0;

tgx = -1, х = — + n , n ͼ Z

tgx= ; х = arctg + k, k ͼ Z.

Ответ : — + n , n ͼ Z;

arctg + k, k ͼ Z.

( Сканави М.И. 8.076)

sin x – sin 2 x + sin 5 x + sin 8 x = 0;

сгруппировав первое с третьим, второе с четвертым слагаемые левой части и применив формулы суммы и разности синусов, получим

2sin 3x cos 2x + 2sin 3x cos 5x = 0;

вынесем в левой части общий множитель за скобки и применим формулу суммы косинусов

2sin 3x ∙ 2 cos cos = 0;

sin 3x = 0, x = , n ͼ Z

cos = 0, x = + , k ͼ Z

cos = 0; x = + , m ͼ Z.

Произведем отбор корней, воспользовавшись тригонометрической окружностью

Ответ: , n ͼ Z ;

+ , k ͼ Z \ < 7 m +3| m ͼ Z >.

( Сканави М.И. 8.076)

= 2;

воспользуемся формулой косинуса двойного угла

= 2;

sin = 1,

sin ≠ 0;

sin = 1;

х= + 4 , k ͼ Z .

Ответ: + 4 , k ͼ Z .

(Сканави М.И. 8.120)

+ =0

;понизим степень, воспользовавшись формулами косинуса двойного угла

1 +cos x +1 + cos 3x -1 +cos 4x -1 +cos 8x =0;

сгруппируем слагаемые и воспользуемся формулой суммы косинусов

2cos 2x cos x + 2cos 2x cos 6x =0;

2cos 2x 2cos 3,5x cos 2,5x=0;

произведение всюду определенных множителей равно нулю тогда и только тогда, когда хотя бы один из этих множителей равен нулю

cos 2x=0 2x= + , n ͼ Z

cos 3,5x=0 3,5x= + , m ͼ Z

cos 2,5x=0; 2,5x= + , k ͼ Z;

x= + , n ͼ Z

x= + , m ͼ Z

x= + , k ͼ Z .

Ответ: + , n ͼ Z ;

+ , m ͼ Z ;

+ , k ͼ Z .

Изучение тригонометрических уравнений позволяет учащимся овладеть конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, развития умственных способностей, умение извлекать учебную информацию на основе сопоставительного анализа графиков, самостоятельно выполнять различные творческие работы.

В данной работе рассмотрены основные методы решения тригонометрических уравнений, причем, как специфические, характерные только для тригонометрических уравнений, так и общие функциональные методы решения уравнений, применительно к тригонометрическим уравнениям.

Для успешного решения уравнений необходимо знать формулы корней простейших тригонометрических уравнений, значение тригонометрических функций для основных углов и значение обратных тригонометрических функций, универсальные правила решения уравнений. Рассмотрено решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим. Указано, что при решении тригонометрических уравнений широко используются тождества, выражающие соотношение между тригонометрическими функциями одного и разных аргументов.

Приведенные методы не исчерпывают все многообразие способов решений тригонометрических уравнений. Однако рассмотренные типы уравнений встречаются наиболее часто и важно уметь распознавать в данном уравнении тот или иной тип.

Результаты данной работы могут быть использованы в качестве учебного материала при подготовке творческих работ, при составлении факультативных курсов для школьников, так же работа может применяться при подготовке учащихся к Единому государственному экзамену, вступительным экзаменам.

Алексеев А. Тригонометрические подстановки. // Квант. – 1995. — №2. –с. 40 – 42.

Выгодский М. Я. «Справочник по элементарной математике». М., «Наука», 1982 г.

Г. И. Глейзер История математики в школе. – М.: «Просвещение» 1983г.

Карасев В.А., Лёвшина Г.Д. «12 уроков по тригонометрии» — М.: Илекса, 2013.- 200 с.:ил.

Крамор В.С. Тригонометрические функции. – М.: Просвещение, 1979.

Сост. Гряда Н. Н. и др. Обобщающее повторение в системе подготовки к ЕГЭ по теме «Тригонометрические уравнения», Армавир, 2005г.

Цукарь А.Я. Упражнения практического характера по тригонометрии //Математика в школе. 1993-№3- с 12-15.

Шаталов В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии. — М.: Новая школа, 1993.


источники:

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

http://infourok.ru/proekt_metody_resheniya_trigonometricheskih_uravneniy-574453.htm