Как решить уравнение для ребра пирамиды

Пирамида и ее боковые ребра. Формулы. Боковое ребро пирамиды Хеопса

Одной из геометрических фигур, свойства которых изучают в школах в курсе стереометрии, является пирамида. Рассмотрим, что собой представляет эта фигура, а также подробно охарактеризуем важный линейный параметр — боковое ребро пирамиды.

Пирамида как фигура геометрии

Прежде чем рассматривать понятие о боковом ребре пирамиды, следует дать определение этой пространственной фигуры. Если говорить коротко, то пирамида представляет собой поверхность, ограниченную одним n-угольником и n треугольниками. Рисунок ниже показывает один из возможных вариантов этой фигуры.

Вам будет интересно: Микроскопы «Микромед»: обзор, описание, характеристики

С геометрической точки зрения получить пирамиду можно таким способом: взять n-угольник и соединить все его углы с некоторой точкой в пространстве, которая не должна лежать в плоскости n-угольника.

Заметим, что, независимо от количества сторон n в исходном многоугольнике, всегда при соединении его углов с единственной точкой получаются треугольники. Их совокупность образует боковую поверхность пирамиды, а исходный многоугольник является ее основанием. Точка, в которой соединяются все треугольники, получила название вершины пирамиды.

Элементы пирамиды

Каждая пирамида образована тремя главными элементами:

Граней или сторон у фигуры всегда n + 1. Это легко видеть на приведенном в предыдущем пункте рисунке. Шестиугольное основание является одной гранью. Оставшиеся 6 сторон представляют собой треугольники, опирающиеся на стороны основания и пересекающиеся в вершине пирамиды.

Ребра представляют собой совокупность точек пересечения соседних граней. Фигура имеет два типа этих элементов:

  • ребра основания;
  • боковые ребра пирамиды.

Их количества, независимо от числа сторон n основания, всегда равны друг другу, то есть фигура имеет 2 × n ребер. Если с ребрами основания все понятно (они являются сторонами n-угольника), то для боковых ребер следует уточнить, что они представляют собой отрезки, соединяющие углы основания с высотой рассматриваемой фигуры.

Наконец, третьим типом элементов пирамиды будут вершины. У фигуры имеется n + 1 вершина. Однако n из них образованы основанием и двумя боковыми гранями. Лишь одна единственная вершина не связана с основанием. Она играет важную роль при изучении количественных характеристик пирамиды, например, ее высоты или апофемы.

Правильные пирамиды

Пирамиды могут быть наклонными и прямыми, правильными и неправильными, выпуклыми и вогнутыми. Все названные типы фигур отличаются друг от друга многоугольным основанием и особенностями поведения высоты.

Предположим, что имеется пирамида, у которой высота (опущенный из вершины к основанию перпендикуляр) падает на многоугольник точно в его геометрическом центре. В этом случая фигура называется прямой. Если же многоугольник является равносторонним, то помимо прямой, пирамида также будет правильной. Напомним, что центр геометрический плоской фигуры аналогичен центру масс в физике. Для квадрата он совпадает с точкой пересечения диагоналей, а для треугольника — с точкой, где медианы пересекаются.

Пирамиды правильные удобно изучать ввиду их симметрии. Так, боковые ребра правильной пирамиды и ее боковые грани равны друг другу. Частным случаем является ситуация, когда боковые грани будут образованы равносторонними треугольниками.

Далее рассмотрим, какими формулами следует пользоваться, чтобы определить размеры боковых ребер пирамид — правильной четырехугольной и треугольной.

Треугольная пирамида

Существуют четыре линейных параметра, которые описывают размеры правильной пирамиды. К ним относятся сторона основания a, боковое ребро b, высота h и апофема hb. Ниже приведем формулы, которые позволяют рассчитать длину бокового ребра для треугольной пирамиды правильной. Основание этой фигуры представляет треугольник с равными сторонами, что позволяет записать следующие равенства:

Обе формулы являются следствием теоремы Пифагора для треугольников, в которых боковое ребро b является гипотенузой.

Четырехугольная пирамида

Эта фигура, пожалуй, является самой известной среди остальных пирамид благодаря величественным древним египетским сооружениям. Боковое ребро пирамиды четырехугольной правильной можно определить по таким формулам:

Как и в предыдущем случае, эти выражения являются следствием свойства катетов и гипотенузы прямоугольного треугольника.

Отметим, что формула расчета бокового ребра правильной пирамиды четырехугольной через ее апофему и сторону основания аналогична таковой для треугольной фигуры. Это совпадение не является случайным, поскольку боковые грани обеих пирамид — это равнобедренные треугольники.

Задача на определение бокового ребра пирамиды Хеопса

Каждый человек знает, что первое чудо света — пирамида Хеопса, обладает головокружительными размерами. Она является самой большой из всех пирамид, находящихся в египетской Гизе. Стороны ее основания образуют квадрат с точностью до нескольких десятков сантиметров. Средняя длина стороны пирамиды оценивается в 230,363 метра. Высота пирамиды в настоящее время составляет около 137 метров, однако исходная высота каменного гиганта была 146,50 метров.

Воспользуемся приведенными выше цифрами, чтобы определить, чему равно боковое ребро правильной пирамиды четырехугольной, посвященной фараону Хеопсу.

Поскольку нам известна высота h и длина стороны a монумента, то следует применить такую формулу для b:

Подставляя в нее известные данные, получаем, что боковое ребро правильной четырехугольной пирамиды равно 273 метра, что немногим меньше периметра футбольного поля (300 метров).

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Пирамиды. Правильные пирамиды. Теорема Эйлера. Формулы для объема, площади боковой поверхности и площади полной поверхности пирамиды

Пирамиды. Теорема Эйлера для пирамид
Правильные пирамиды. Свойства правильной пирамиды
Тетраэдры. Правильные тетраэдры
Формулы для объема, площади боковой поверхности и площади полной поверхности пирамиды

Пирамиды

Рассмотрим произвольную плоскость α , произвольный выпуклый n – угольник A1A2 . An , расположенный в этой плоскости, и точку S , не лежащую в плоскости α .

Определение 1. Пирамидой ( n — угольной пирамидой) называют фигуру, образованную отрезками, соединяющими точку S со всеми точками многоугольника A1A2 . An (рис. 1) .

Точку S называют вершиной пирамиды.

Точки A1 , A2 , . , An , S часто называют просто вершинами пирамиды.

Боковые ребра и ребра основания пирамиды часто называют просто ребрами пирамиды.

Множество всех боковых граней пирамиды составляет боковую поверхность пирамиды.

Боковые грани и основание пирамиды часто называют просто гранями пирамиды.

Полная поверхность пирамиды состоит из основания пирамиды и ее боковой поверхности.

Теорема Эйлера. Для любой пирамиды справедливо равенство:

число вершин
+
число граней
число ребер
=2
число
вершин
+
число
граней
число
ребер
=2
число
вершин
+
число
граней
число
ребер
=2

Доказательство. Заметим, что у n — угольной пирамиды (n + 1) вершина, n боковых граней, 1 основание, n ребер основания и n боковых ребер. Следовательно, у n — угольной пирамиды (n + 1) грань и 2n ребер.

то теорема Эйлера доказана.

Правильные пирамиды. Свойства правильной пирамиды

Замечание 2. Если центр основания A1A2 . An правильной пирамиды SA1A2 . An обозначить буквой O , то длина отрезка SO будет равняться высоте пирамиды. Часто и сам отрезок SO называют высотой пирамиды, опущенной из вершины S .

Определение 4. Высоту боковой грани правильной пирамиды, опущенную из вершины S , называют апофемой .

На рисунке 3 отрезок SB – апофема грани SAnAn-1 и отрезок SC – апофема грани SA2A1 .

Замечание 3 . У любой правильной n – угольной пирамиды можно провести n апофем.

Свойства правильной пирамиды:

Все боковые ребра правильной пирамиды равны.

Все боковые грани правильной пирамиды являются равными равнобедренными треугольниками.

У любой правильной пирамиды все апофемы равны.

Все боковые ребра правильной пирамиды образуют с плоскостью основания пирамиды равные углы.

Все боковые грани правильной пирамиды образуют с плоскостью основания пирамиды равные двугранные углы.

Тетраэдры. Правильные тетраэдры

Определение 5. Произвольную треугольную пирамиду называют тетраэдром.

Утверждение. У любой правильной треугольной пирамиды противоположные ребра попарно перпендикулярны.

Доказательство. Рассмотрим правильную треугольную пирамиду SABC и пару ее противоположных ребер, например, AC и BS . Обозначим буквой D середину ребра AC . Поскольку отрезки BD и SD являются медианами в равнобедренных треугольниках ABC и ASC , то BD и SD перпендикулярны ребру AC (рис. 4).

По признаку перпендикулярности прямой и плоскости заключаем, что прямая AC перпендикулярна плоскости BSD. Следовательно, прямая AC перпендикулярна прямой BS , что и требовалось доказать.

Определение 6. Правильную треугольную пирамиду, у которой все ребра равны, называют правильным тетраэдром (рис. 5).

Задача. Найти высоту правильного тетраэдра с ребром a .

Решение. Рассмотрим правильный тетраэдр SABC . Пусть точка O – основание перпендикуляра, опущенного из вершины S на плоскость ABC. Поскольку SABC – правильная пирамида, то точка O является точкой пересечения медиан равностороннего треугольника ABC. Следовательно,

где буквой D обозначена середина ребра AC (рис. 6).

,

.

По теореме Пифагора из треугольника BSO находим

Ответ.

Формулы для объема, площади боковой и полной поверхности пирамиды

Введем следующие обозначения

Vобъем пирамиды
Sбокплощадь боковой поверхности пирамиды
Sполнплощадь полной поверхности пирамиды
Sоснплощадь основания пирамиды
Pоснпериметр основания пирамиды

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности пирамиды :

,

ПирамидаРисунокФормулы для объема, площади боковой и полной поверхности
Произвольная пирамида
Правильная n – угольная пирамида
Правильный тетраэдр

Формулы для объема, площади боковой и полной поверхности:

,

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:


источники:

http://mathhelpplanet.com/static.php?p=onlayn-resheniye-piramidy

http://www.resolventa.ru/uslugi/uslugischoollos.htm

Произвольная пирамида