Как решить уравнение с косинусом

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Как решить уравнение с косинусом

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Простейшие тригонометрические уравнения с косинусом и синусом. Часть 1

Ключ к решению простейших тригонометрических уравнений – в отличном знании тригонометрического круга. Если вы знаете значения стандартных точек и их синусы и косинусы, то проблем с уравнениями не будет. А если пробелы все-таки есть, то восполнить их можно в статье «Как запомнить тригонометрический круг?» .

Алгоритм решения простейших уравнений с косинусом

Любой алгоритм проще всего понять на конкретных примерах, поэтому сразу с них и начнем.

Пример №1. Решить уравнение \(\cos⁡x=\frac<1><2>\).

Шаг 1. Построить окружность и оси синусов и косинусов.

Шаг 2. Отметить на оси косинусов значение, которому косинус должен быть равен.

Шаг 3. Провести перпендикуляр и отметить точки пересечения перпендикуляра и круга. Если пересечений нет, то уравнение не имеет решений.

Шаг 4. Найти по одному значению для каждой из полученных точек на круге. Для уравнений с косинусом значения в верхней и нижней точках всегда будут отличаться только знаком.

Шаг 5. Записать все значения каждой точки используя формулу \(x=t_0+2πn,n∈Z\) (подробнее о формуле в этом видео ), где \(t_0\) – как раз те значения точек, которые вы нашли в шаге 4.

Возможно, у вас возник вопрос, почему мы в ответ добавляем \(+2πn\), \(n∈Z\). Дело в том, что у каждой точки на тригонометрическом круге есть множество значений, и каждое значение будет решением уравнения, а значит все они обязательно должны быть в ответе.

Но проблема в том, что значений этих бесконечно много, и просто в строчку их не запишешь. Поэтому и придумали такую формулу записи, в которой содержатся все значения одной точки на тригонометрическом круге (подробнее смотрите в этом и этом видео).

С 1-3 шагом всё понятно, а вот над 4 шагом надо подумать. Как найти значения полученных точек? Можно заметить, что дуга между точкой со значением \(π\) и найденной точкой равняется π/6 (см. картинку ниже). И чтоб из точки π прийти к верхней найденной точке надо пройти в отрицательную сторону расстояние \(\frac<π><6>\), то есть значение верхней точки равно \(π-\frac<π><6>=\frac<5π><6>\). Значит значение нижней \(-\frac<5π><6>\).

Пример №3. Решить уравнение \(\cos⁡x=1\).

Видно, что в этом случае у косинуса только одна точка на круге будет решением, и эта точка совпадает с нулём на окружности. Т.е. по формуле получим \(x=0+2πn\), \(n∈Z\). Однако добавление нуля ничего не меняет, поэтому ответ можно записать проще: \(x=2πn\), \(n∈Z\).

Значения косинуса (как и синуса) для любого аргумента всегда лежат между \(-1\) и \(1\) включительно, поэтому равняться \(-\frac<7><6>\) косинус никак не может. Значит такое уравнение не имеет решений.

Вот так решаются простейшие тригонометрические уравнения вида \(\cos⁡x=a\). Для наглядности мы все рассказанное выше объединили на одной инфографике — взглянув на нее вы сразу вспомните суть. Пользуйтесь на здоровье.

Алгоритм решения простейших уравнений с синусом

Шаг 1. Построить окружность и оси синусов и косинусов.

Шаг 2. Отметить на оси синусов, значение, которому синус должен быть равен.

Шаг 3. Провести перпендикуляр и отметить точки пересечения перпендикуляра и круга. Если пересечений нет, то уравнение не имеет решений.

Шаг 4. Найти по одному значению каждой из полученных точек на круге. Для уравнений с синусом значение второй точки можно найти, если вычесть из π значение первой точки.

Шаг 5. Записать все значения каждой точки используя формулу \(x=t_0+2πn\), \(n∈Z\), где \(t_0\) – как раз те значения точек, которые вы нашли в шаге 4.

Так как суть, думаю, вам уже ясна, дальнейшие объяснения мы опускаем.

Пример №7. Решить уравнение \(\sin⁡x=0\).

В уравнениях с \(0\), главное не перепутать к какой оси надо проводить перпендикуляр. Ось синусов – вертикальная, соответственно перпендикуляр будет горизонтален.

Вот в принципе и всё. Как обычно, в конце – инфографика для наглядности.


источники:

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

http://cos-cos.ru/ege/zadacha213/328/