Как решить уравнение с преобразованием

Решение уравнений через преобразования

В этой статье мы подробно и всесторонне разберем, как осуществляется решение уравнений через проведение преобразований. Сначала расскажем, в чем суть метода. Дальше перечислим преобразования уравнений, которые используются при решении. Обязательно обговорим, на что стоит обращать особое внимание при проведении преобразований. В заключение рассмотрим решения примеров.

Суть метода

Суть метода решения уравнений через преобразования состоит в использовании преобразований уравнения для построения цепочки равносильных уравнений и уравнений-следствий с целью получения достаточно простого в плане решения конечного уравнения, по решению которого можно найти решения исходного уравнения.

Алгоритм

Схематично процесс решения уравнения через преобразования можно представить следующим образом. Исходное уравнение, обозначим его (1), преобразуется в равносильное уравнение или уравнение-следствие (2). Оно преобразуется в равносильное уравнение или уравнение-следствие (3). И так далее до уравнения (n), которое мы в состоянии решить.

Понятно, что если все преобразования равносильные, то уравнение (n) равносильно исходному уравнению (1), и решение уравнения (n) является интересующим нас решением исходного уравнения (1). Если же хотя бы для одного из переходов используется преобразование, которое в общем случае не является равносильным, то уравнение (n) является уравнением-следствием для исходного. Это означает, что среди корней уравнения (n) могут быть корни, посторонние для исходного уравнения (1). Избавиться от них позволяет отсеивание посторонних корней.

Приведенная информация позволяет записать алгоритм решения уравнений через преобразования:

  • Выстроить цепочку равносильных уравнений и уравнений-следствий до уравнения, которое мы в состоянии решить.
  • Решить полученное уравнение.
    • Если все преобразования были равносильными, то полученное решение является искомым.
    • Если среди проведенных преобразований были такие, которые в общем случае не являются равносильными, то провести отсеивание посторонних корней.

Какие преобразования используются? Список

Все основные преобразования, которые используются при решении уравнений, подробно описаны в этой статье. Здесь мы просто перечислим их в виде списка:

  • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.
    • Перестановка местами слагаемых и множителей.
    • Раскрытие скобок.
    • Группировка слагаемых и/или множителей.
    • Вынесение за скобки общего множителя.
    • Замена числовых выражений их значениями.
    • Выполнение действий с одночленами и многочленами.
    • Приведение подобных слагаемых.
    • Сокращение дробей.
    • Замена нулем произведений с нулевыми множителями и дробей с нулем в числителе.
    • Использование тождеств, отражающих определения и свойства корней, степеней, логарифмов, тригонометрических функций и т.п.
  • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.
  • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.
  • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.
  • Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля.
  • Умножение или деление обеих частей уравнения на одно и то же выражение.
  • Возведение обеих частей уравнения в одну и ту же натуральную степень.
  • Освобождение от внешней функции.
  • Извлечение корня одной и той же степени из обеих частей уравнения.
  • Логарифмирование.
  • Потенцирование.

На что обращать особое внимание при проведении преобразований?

На ОДЗ

При проведении преобразований необходимо держать под контролем ОДЗ. Зачем? Сейчас мы с этим разберемся.

ОДЗ при переходе от одного уравнения к другому может оставаться неизменной, расширяться или сужаться. Приведем примеры. В результате перехода от уравнения 4·x=x+3 к уравнению 4·x−x=3 ОДЗ не изменяется. Переход от уравнения 1/x−1/x+x 2 =0 к уравнению x 2 =0 сопровождается расширением ОДЗ с множества (−∞, 0)∪(0, +∞) до множества всех действительных чисел R . А преобразование уравнения lgx 2 =2 к виду 2·lgx=2 сопровождается сужением ОДЗ: для исходного уравнения ОДЗ есть множество (−∞, 0)∪(0, +∞) , а для полученного — (0, +∞) . Ну и что с того? А вот что: за счет расширения ОДЗ могут появиться корни, посторонние для исходного уравнения, а сужение ОДЗ может быть причиной потери корней. Для иллюстрации сказанного вновь обратимся к приведенным примерам. При переходе от уравнения 1/x−1/x+x 2 =0 к уравнению x 2 =0 появляется корень x=0 , посторонний для исходного уравнения. А в результате замены уравнения lgx 2 =2 уравнением 2·lgx=2 происходит потеря корня x=−10 .

В расширении ОДЗ при преобразовании уравнений нет ничего особо страшного – просто после решения последнего уравнения цепочки равносильных уравнений и уравнений-следствий необходимо позаботиться об отсеивании корней, посторонних для исходного уравнения.

А вот от преобразований, в результате проведения которых сужается ОДЗ, необходимо отказаться. Точнее, от них стоит отказываться лишь тогда, когда ОДЗ сужается на множество, содержащее бесконечное количество элементов. Преобразования, в результате проведения которых из ОДЗ выпадает некоторое конечное количество чисел, допустимы. Для их проведения достаточно отдельно проверить выпадающие из ОДЗ числа на предмет того, какие из них являются корнями решаемого уравнения. Типичным таким преобразованием является деление обеих частей уравнения на выражение, обращающееся в нуль на ОДЗ. Подробнее об этом мы поговорим в статье «Как избежать потери корней при решении уравнений».

Итак, контролировать ОДЗ нужно, чтобы при проведении преобразований не терять корни, и понимать, когда необходимо проводить отсеивание посторонних корней, а когда это действие необязательно.

На тождественность

При проведении преобразований, заключающихся в замене выражений тождественно равными выражениями, нужно очень внимательно следить за тем, чтобы выражения были именно тождественно равными. Зачем? Это гарантирует, что уравнение, полученное в результате проведения преобразования, равносильно исходному уравнению или является его следствием. Замена выражения не тождественно равным ему выражением не гарантирует получение равносильного уравнения или уравнения-следствия, а это означает, что по корням полученного уравнения невозможно будет сделать вывод о корнях исходного уравнения.

Для примера возьмем уравнение . Его можно решить, например, методом возведения обеих частей в квадрат. Указанный метод позволяет найти единственный корень этого уравнения: . А теперь давайте допустим, что нам захотелось решить это уравнение через преобразования, и мы сделали это так:

Что мы сделали не так? Мы ошиблись в самом первом преобразовании – в замене выражения x+3 выражением . А дело здесь в том, что выражения x+3 и не являются тождественно равными. Действительно, их значения различны при x+3 . В результате мы получили неправильное решение.

На необходимость отсеивания посторонних корней при возведении обеих частей уравнения в четную степень

Решение уравнений, особенно иррациональных, может проводиться через преобразование, заключающееся в возведении обеих частей уравнения в одну и ту же натуральную степень. Это преобразование детально разобрано в статье «Решение иррациональных уравнений методом возведения обеих частей в одну и ту же степень». Там обосновано, что возведение обеих частей уравнения в одну и ту же нечетную степень является равносильным преобразованием, а возведение в одну и ту же четную степень в общем случае приводит к уравнению-следствию. Из этого следует, что при решении уравнения путем возведения его обеих частей в одну и ту же четную степень нужно обязательно позаботиться об отсеивании посторонних корней.

Обратимся к уравнению для наглядности. Его решение можно получить, если прибегнуть к возведению обеих частей уравнения в квадрат. Это преобразование позволяет перейти к уравнению . Одним из корней полученного уравнения является число −3/2 , в чем легко убедиться, выполнив проверку подстановкой. Но −3/2 – это посторонний корень для исходного уравнения , так как его подстановка дает неверное равенство 5/2=−5/2 . Этот посторонний корень появляется из-за проведенного нами преобразования – из-за возведения обеих частей уравнения в одну и ту же четную степень, в нашем случае в квадрат. Действительно, возведение в квадрат из неверного равенства 5/2=−5/2 делает верное (5/2) 2 =(−5/2) 2 .

Итак, при использовании преобразования, которое заключается в возведении обеих частей уравнения в одну и ту же четную степень, нельзя упускать из внимания необходимость отсеивания посторонних корней.

На условия, при которых возможно проведение отдельных преобразований

Некоторые преобразования уравнений можно проводить лишь при выполнении определенных условий. В пример приведем преобразование, заключающееся в освобождении от внешней функции. Для его проведения нужно, чтобы функция принимала каждое свое значение только по одному разу (в частности, была возрастающей или убывающей). Если это условие не выполняется, то указанное преобразование уравнения может привести к потере корней. Продемонстрируем это, обратившись к уравнению (x+3) 12 =(2·x−6) 12 . Освобождение от внешней функции возведения в двенадцатую степень приводит к уравнению x+3=2·x−6 , единственным корнем которого является x=9 . При таком переходе происходит потеря корня x=1 . Причина этого кроется в игнорировании условия, при котором возможно освобождение от внешней функции.

Помимо отбрасывания внешней функции, выполнения определенных условий требуют следующие преобразования:

  • извлечение корня из обеих частей уравнения,
  • логарифмирование,
  • потенцирование.

Так что прежде чем провести задуманное преобразование уравнения, надо обратить пристальное внимание условия, при которых это преобразование можно осуществить. И только если они выполнены или преобразование не требует выполнения никаких особых условий, то можно смело его проводить.

Примеры решения уравнений

Метод решения уравнений через преобразования для некоторых видов уравнений является основным. Например, через преобразования решаются любые линейные уравнения с отличным от нуля коэффициентом при x . Так решение уравнения 2·x−1=0 можно представить в виде следующей цепочки уравнений, получающейся в результате проведения преобразований:
2·x−1=0 ,
2·x=1 (перенос слагаемого из одной части уравнения в другую с противоположным знаком),
(2·x):2=1:2 (деление обеих частей уравнения на отличное от нуля число 2 ),
2·x:2=1:2 (замена выражения в левой части уравнения тождественно равным ему выражением, полученным в результате раскрытия скобок),
2:2·x=1:2 (замена выражения в левой части уравнения тождественно равным ему выражением, полученным в результате перестановки местами множителей),
1·x=1/2 (замена выражения в левой части уравнения тождественно равным ему выражением, полученным в результате замены числовых выражений их значениями),
x=1/2 (замена выражения в левой части уравнения тождественно равным ему выражением).

Понятно, что так подробно преобразования уравнений никто не расписывает. Многие преобразования проводятся в уме. Но рекомендуем не увлекаться с устными преобразованиями. Целесообразно проводить в уме только самые простые преобразования, остальные лучше делать на бумаге. Так лучше прослеживается логика решения, а вероятность сделать ошибку при проведении преобразований снижается.

Часто метод решения уравнений через преобразования используется совместно с другими методами решения уравнений. Например, решение уравнения может начинаться с преобразований, дальше может вводиться новая переменная, уравнение с новой переменной может решаться через преобразования, а полученные после возврата к старой переменной уравнения могут решаться функционально-графическим методом.

Другие примеры решения уравнений через преобразования Вы без труда найдете, побродив по статьям раздела «Решение уравнений».

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

1. Понятие уравнения и его корней

Равенство с переменной называ­ется уравнением. В общем виде урав­нение с одной переменной x записы­вают так: f (я) = g (я).

Под этой краткой записью пони­мают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содер­жит переменную под знаком корня).

Корнем (или решением) уравне­ния с одной переменной называется значение переменной, при подста­новке которого в уравнение получа­ется верное равенство.

Решить уравнение — значит най­ти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

x = 2 — корень уравнения \/x + 2 = x, так как при x = 2 получаем верное равенство: -\Д = 2, то есть 2 = 2.

2. Область допустимых значений (ОДЗ)

Областью допустимых зна­чений (или областью опреде­ления) уравнения называется общая область определения для функций f (x) и g (x), стоя­щих в левой и правой частях уравнения.

Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 опре­деляется условием: x + 2 1 0, а область определения функции g (x) = x — множе­ство всех действительных чисел.

Если каждый корень первого уравне­ния является корнем второго, то второе уравнение называется следствием пер­вого уравнения.

Если из правильности первого равенства следует правильность каждого последую­щего, то получаем уравнения-следствия.

При использовании уравнений-след­ствий не происходит потери корней ис­ходного уравнения, но возможно появление посторонних корней. Поэтому при исполь­зовании уравнений-следствий проверка полученных корней подстановкой их в ис­ходное уравнение является составной час­тью решения (см. пункт 5 этой таблицы).

► Возведем обе части уравне­ния в квадрат:

(x + 2) = x 2 , x + 2 = x 2 , x 2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний ко­рень (при х = —1 получаем не­верное равенство 1 = —1). Ответ: 2. 2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x 2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x — 2 + \/1 — x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x — 2 + VT — x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

мой -! из которой получаем систему -! не имеющую решений.

[1 — x 10, [x 2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее урав­нение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. По­чему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гаран­тируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не яв­ляется корнем первого уравнения. Для первого уравнения этот корень явля­ется посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторон­них корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы пра­вильно применять уравнения-следствия для решения уравнений, необходи­мо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстанов­кой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения

Замечание. Переход от данного уравнения к уравнению-следствию мож­но обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок запи­сан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо вклю­чить проверку полученных корней.

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, ко­торые не имели корней. Формально будем считать, что и в этом случае урав­нения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).

В курсе алгебры и начал математического анализа мы будем рассматри­вать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго

и, наоборот, каждый корень второго уравнения является корнем
первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое от­личается от множества всех действительных чисел, ответ на вопрос «Равно­сильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рас­смотреть уравнения:

то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, по­скольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно­

сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем слу­чае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и си­стем уравнений и неравенств) мы будем выполнять на ОДЗ исходного урав­нения (неравенства или системы). Отметим, что в том случае, когда ОДЗ за­данного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения \Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х 2 , то для всех его корней это уравнение является верным равенством. Тогда выражение х 2 , стоящее в пра­вой части этого равенства, всегда неотрицательно (х 2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х 2 ОДЗ заданного уравнения можно не запи­сывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

Как указывалось выше, выполняя равносильные преобразования уравне­ний, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и — ентир для выполнения равносильных преобразований уравнений.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантиро­вать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и га­рантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из опреде­ления равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при

выполнении равносильных преобразований мы должны гарантировать со­хранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и — ен т и р ом для решения уравнений с помощью равносильных преобразова­ний. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.)

Например, чтобы решить с помощью равносильных преобразований урав-

——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства

дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внима­ние на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет

условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. 2 + л/ x — 2 = 6x + >/ x — 2. Перенесем из правой части уравнения в левую слагаемое \tx — 2 с противоположным знаком и приведем подобные члены.

Получим х 2 — 6х = 0, х1 = 0, х2 = 6

к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

Приведение обе­их частей урав­нения к обще­му знаменателю (при сокращении знаменателя)

4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).

4 (х + 3) + 7 (х + 2) = 4,

Возведение обеих частей иррацио­нального уравне­ния в квадрат

yj2x +1 =Vx. 2х + 1 = х,

б) выполне­ние преоб­разований, при которых происходит неявное умно­жение на нуль;

Умножение обеих частей уравнения на выражение с пере­менной

х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.

(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1

Как получить правильное (или полное) решение

Пример правильного (или полного) решения

при решении уравнения

х1 = 0 не является корнем заданного уравнения

Выполнить про­верку подстановкой корней в заданное уравнение

x 2 + V x — 2 = 6x + >/ x — 2.

► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.

Ответ: 6. x + 2 x + 3 x 2 + 5x + 6

► 4 (x + 3) + 7 (x + 2) = 4;

11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. 2 + х + 1 = 0.

► D = —3 2 = (2х + 1) 2 . Получим 3х 2 + 6х = 0, х1 = 0, х2 = —2

2. Потеря корней

Явное или неяв­ное сужение ОДЗ заданного урав­нения, в частно­сти выполнение преобразований, в ходе которых происходит не­явное деление на нуль

1. Деление обеих ча­стей уравнения на выражение с пе­ременной

Поделив обе части уравнения на х, получим

2. Сложение, вычи­тание, умноже­ние или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ задан­ного уравнения

Если к обеим частям уравнения прибавить \[x, то получим уравнение

x 2 + yfx = 1 + yfx, у которого только один корень х = 1


источники:

http://cos-cos.ru/math/175/

http://ya-znau.ru/znaniya/zn/274