Как решить уравнения и неравенства с параметром

Квадратные уравнения и квадратичные неравенства с параметрами

Дорогой друг! Если ты никогда не решал задач с параметрами – прочитай статьи «Что такое параметр» и «Графический способ решения задач с параметрами». Квадратные уравнения, а тем более неравенства с параметрами только на первый взгляд кажутся простыми. Чтобы уверенно решать их, надо знать определенные приемы. О некоторых мы расскажем.

Разберем сначала подготовительные задачи. А в конце – реальную задачу ЕГЭ.

1. Найдите все значения a, при которых уравнение не имеет действительных корней.

Всегда ли это уравнение является квадратным относительно переменной х? – Нет, не всегда. В случае, когда коэффициент при равен нулю, оно станет линейным.

Рассмотрим два случая – когда это уравнение квадратное и когда оно линейное.

Тогда уравнение примет вид 2 = 0. Такое уравнение не имеет действительных корней, что удовлетворяет условию задачи.

Уравнение будет квадратным. Квадратное уравнение не имеет действительных корней тогда и только тогда, когда его дискриминант отрицательный.

Если и – корни квадратного уравнения
, то по теореме Виета:

Решим первое неравенство системы

Квадратный трехчлен в левой части не имеет корней, так как дискриминант равен -32, то есть отрицателен. Поэтому неравенство будет выполняться для всех действительных значений .

Возведем второе уравнение системы в квадрат:

Из этих двух уравнений выразим сумму квадратов и .

Значит, сумму квадратов корней уравнения можно выразить через параметр

График функции — парабола, ее ветви направлены вверх, минимум будет достигаться в ее вершине. Найдем вершину параболы:

3) Найдите все значения , при каждом из которых все решения уравнения

Как и в первой задаче, уравнение является квадратным, кроме случая, когда . Рассмотрим этот случай отдельно

1) . Получим линейное уравнение

У него единственный корень, причем положительный. Это удовлетворяет условию задачи.

2) При уравнение будет квадратным. Нам надо, чтобы решения существовали, причем были положительными. Раз решения есть, то .

Покажем один из приемов решения квадратичных уравнений и неравенств с параметрами. Он основан на следующих простых утверждениях:

— Оба корня квадратного уравнения и положительны тогда и только тогда, когда их сумма положительна и произведение положительно.

Очевидно, что сумма и произведение двух положительных чисел также положительны. И наоборот – если сумма и произведение двух чисел положительны, то и сами числа положительны.

— Оба корня квадратного уравнения и отрицательны тогда и только тогда, когда их сумма отрицательна, а произведение положительно.

Корни квадратного уравнения и имеют разные знаки тогда и только тогда, когда их произведение отрицательно.

Сумма и произведение корней входят в формулировку теоремы Виета, которой мы и воспользуемся. Получим

Второе и третье неравенства имеют одинаковое решение . Решение первого неравенства:
.

С учетом пункта 1 получим ответ

4. При каких значениях параметра a уравнение

имеет единственное решение?

Уравнение является показательным, причем однородным. Мы умеем решать такие уравнения! Разделим обе части на .

Сделаем замену

Для того, чтобы исходное уравнение имело единственное решение, нужно, чтобы уравнение относительно t имело ровно один положительный корень.

1) В случае уравнение будет линейным

Значит, подходит. В этом случае уравнение имеет единственный положительный корень.

2) Если , уравнение будет квадратным.

Дискриминант является полным квадратом и поэтому всегда неотрицателен. Уравнение имеет либо один, либо два корня. В этом случае несложно найти корни в явном виде.

Один корень получился не зависящим от параметра, причем положительным. Это упрощает задачу.

Для того, чтобы уравнение имело единственный положительный корень, нужно, чтобы либо второй был отрицательным, либо равным нулю, либо чтобы корни совпадали. Рассмотрим все случаи.

Объединив все случаи, получим ответ.

И наконец – реальная задача ЕГЭ.

5. При каких значениях a система имеет единственное решение?

Решением квадратного неравенства может быть:

В каких случаях система двух квадратных неравенств имеет единственное решение:

1) единственная общая точка двух лучей-решений ( или интервалов-решений)

2) одно из неравенств имеет решение – точку, которая является решением второго неравенства

Рассмотрим первый случай.

Если является решением 1 и 2 уравнений, то является решением уравнения (вытекает из второго первое) ⇒ или

Если , при этом система примет вид:

Второй корень первого уравнения:

Второй корень второго первого:

Если , при этом система примет вид:

– бесконечно много решений, не подходит.

Рассмотрим второй случай.

– решением является точка, если – является решением второго неравенства.

– решением является точка, если – не является решением первого неравенства.

Неравенства с параметром

Напомню, что два неравенства называются равносильными, если их решения совпадают. При решении неравенств нужно понимать, какие преобразования будут равносильными, и какие нет:

  1. Перенос какого-либо члена неравенства из одной части в другую, при этом знак этого члена меняется на противоположный.
  2. Умножение или деление всего неравенства (левой и правой частей) на одно и то же положительное число.
  3. Умножение или деление всего неравенства на отрицательное число, при условии, что вы меняете знак неравенства.

Разберем несколько примеров простейших неравенств с параметром. Рассуждения здесь примерно такие же, что и при анализе уравнений. Как аналитически исследовать квадратные уравнения, можно познакомиться здесь.

Решить неравенство \((a-2)x>a^2-4\) для любого значения параметра \(a\).

Первый случай: Если \(a=2\), получим неравенство \(0*x>0\), которое не имеет решений.

Внимание! Важно помнить, что если вы делите неравенство на отрицательное число, то знак неравенства меняется на противоположный. Поэтому, нужно рассмотреть еще два случая.

Второй случай: Если \(a > 2 ⇔ x > \frac ⇔ x > a+2;\)

Третий случай: Если \(a 2\) $$ x > a+2;$$ при \(a Пример 2

Решить неравенство \(ax^2-4x-4>0\) при всех значениях параметра \(a\).

Первый случай: Если \(a=0\) , неравенство примет вид \(-4x-4>0 ⇔ x

Получаем, что дискриминант больше нуля при \(a > -1; D 0\) ветки параболы направлены вверх, а при \(a 0,D > 0\)

Учебное пособие «Уравнения и неравенства с параметрами»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…. 16-18

Задания для самостоятельной работы…………………………. 21-28

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

Выделить особое значение — это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

Если а ¹ 0, то при любой паре параметров а и b оно имеет единственное решение х=.

Если а = 0, то уравнение принимает вид : 0х= b . В этом случае значение

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0. Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax b ( а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а . Аналогично для неравенства

ах b множество решений – промежуток (-;), если a > 0, и (; +), если а

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение .

Если а = 0, то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = — решение уравнения.

Ответ: при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3), рассмотрим два случая:

Если а= -3, то любое действительное число х является корнем уравнения (1). Если же а ¹ -3, уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение: Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а — 2) х = а 2 – 4а +4

2(а — 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =. По условию х > 1, то есть >1, а > 4.

Ответ: При а <2>U (4;∞).

Пример 4. Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

а =,

y = a – семейство горизонтальных прямых;

y = графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0, то уравнение решений не имеет. Если а ≠ 0, то уравнение имеет одно решение.

Пример 5. С помощью графиков выяснить, сколько корней имеет уравнение:

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1— один корень

при | а|≤1 – уравнение корней не имеет.

Решение : ах + 4 > 2х + а 2 (а – 2) х > а 2 – 4. Рассмотрим три случая.

а=2 . Неравенство 0 х > 0 решений не имеет.

а > 2. (а – 2) х > ( а – 2)(а + 2) х > а + 2

а (а – 2) х > ( а – 2)(а + 2) х а + 2

Ответ. х > а + 2 при а > 2; х при а при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² — 4 ac , (²- ас)

2) формул корней квадратного уравнения: х 1 =, х 2 =,

1,2 = )

Квадратными называются неравенства вида

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 2 ), то при а > 0 он положителен на множестве (-; х 2 )( х 2; +) и отрицателен на интервале

1 ; х 2 ). Если а 1 ; х 2 ) и отрицателен при всех х (-; х 1 )( х 2; +).

Пример 1. Решить уравнение ах² — 2 (а – 1)х – 4 = 0.

Это квадратное уравнение

Решение: Особое значение а = 0.

При а = 0 получим линейное уравнение 2х – 4 = 0. Оно имеет единственный корень х = 2.

При а ≠ 0. Найдем дискриминант.

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ — 1 , то D >0 . По формуле корней получим: х=;

х 1 =2, х 2 =.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ — 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8— графиком является парабола;

y — семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а -9, уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х ?

Решение. Квадратный трехчлен положителен при всех значениях х, если

, откуда следует, что a > 6 .

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение = 0

Это дробно- рациональное уравнение

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

При а = -2 корней нет.

Пример 2 . Решить уравнение= (1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² — 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² — (а² — 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а — 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1+1=0, х 1+2=0, х2+1=0, х2+2=0.

Если х 1+2=0, то есть (а+1)+2=0, то а = — 3. Таким образом, при а = — 3, х1 посторонний корень уравнения. (1).

Если х2+1=0, то есть (а – 3) + 1= 0, то а = 2. Таким образом, при а = 2 х2 посторонний корень уравнения (1).

Если х2+2=0, то есть (а – 3) + 2 = 0, то а=1. Таким образом, при а = 1,

х2 — посторонний корень уравнения (1).

В соответствии с этим при а = — 3 получаем х = — 3 – 3 = -6;

при а = — 2 х = -2 – 3= — 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2, то х= -5; 3) если а= 0, то корней нет; 4) если а= 1, то х= 2; 5) если а=2, то х=3; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х1 = а + 1, х2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида = g ( x ) равносильно системе

Неравенство f ( x ) ≥ 0 следует из уравнения f ( x ) = g 2 ( x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

≤ g(x) ≥g(x)

Пример 1. Решите уравнение = х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе .

При а = 2 первое уравнение системы имеет вид 0 х = 5, то есть не имеет решений.

При а≠ 2 х=. Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1: ≥ — 1, ≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х= , при уравнение решений не имеет.

Пример 2. Решить уравнение = а (приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Пример 3 . Решим неравенство (а+1)

Решение. О.Д.З. х ≤ 2. Если а+1 ≤0, то неравенство выполняется при всех допустимых значениях х. Если же а+1>0, то

(а+1)

откуда х (2- 2

Ответ. х (- ;2 при а ( —;-1, х (2- 2

при а ( -1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a x= (-1) n arcsin a+πn, n Z, ≤1, (1)

Cos x = a x = ±arccos a + 2 πn, , n Z, ≤1. (2)

Если >1, то уравнения (1) и (2) решений не имеют .

tg x = a x= arctg a + πn, n Z, aR

ctg x = a x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a arcsin a + 2 πn Z,

при a xR ; при a ≥ 1, решений нет.

при а≤-1, решений нет; при а >1, xR

3. cos x > a arccos a + 2 πn x arccos a + 2 πn , n Z ,

при а xR ; при a ≥ 1 , решений нет.

при а≤-1 , решений нет ; при a > 1, x R

5. tg x > a, arctg a + πnZ

Пример1. Найти а, при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1 4≤ а ≤ 6, а уравнение cosx = — а-1 при условии -1≤ -1- а ≤ 1 -2 ≤ а ≤0.

Ответ. а -2; 0 4; 6

Пример 2. При каких b найдется а такое, что неравенство + b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а π /2 при а ≥0.

§ 6. Показательные уравнения и неравенства

1. Уравнение h ( x ) f ( x ) = h ( x ) g ( x ) при h ( x ) > 0 равносильно совокупности двух систем и

2. В частном случае ( h ( x )= a ) уравнение а f ( x ) = а g ( x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f ( x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f ( x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f ( a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f ( x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х = имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0 8 х >1 >1 >0, откуда a (1,5;4).

Ответ. a (1,5;4).

Решение. Рассмотрим три случая:

1. а . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых х R .

3. а > 0 . a 2 ∙2 x > a 2 x > x > — log 2 a

Ответ. х R при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g ( x ) ≤ log f ( x ) h ( x ) равносильно совокупности двух систем: и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение. Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

log х – 2 = 4 – log a x log х + log a x – 6 = 0, откуда log a x = — 3

х = а -3 и log a x = 2 х = а 2 . Условие х = а 4 а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а ( 0; 1) (1; ).

Пример 2. Найдите наибольшее значение а, при котором уравнение

2 log + a = 0 имеет решения.

Решение. Выполним замену = t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0 а.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log ( x 2 – 2 x + a ) > — 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ± и х 3,4 = 1 ±.

Критические значения параметра : а = 1 и а = 9.

Пусть Х1 и Х2 – множества решений первого и второго неравенств, тогда

Х 1 Х 2 = Х – решение исходного неравенства.

При 0 a 1 = (- ;1 — )( 1 + ; +), при а > 1 Х 1 = (-;+).

При 0 a 2 = (1 —; 1 +), при а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0 a ≤1 Х = (1 —;1 — )(1 + ;1 +).

3. a ≥ 9 Х – решений нет.

Высокий уровень С1, С2

Пример 1. Найдите все значения р, при которых уравнение

р ∙ ctg 2 x + 2 sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ ( — 1) + 2 sinx + p = 3, sinx = t , t , t 0.

p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f ( y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f ( x ) на . у / = 6 t – 6 t 2 , 6 t — 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t , E ( f ) = ,

При t , E ( f ) = , то есть при t , E ( f ) = .

Чтобы уравнение 3 t 2 – 2 t 3 = p ( следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E ( f ), то есть p .

Ответ. .

При каких значениях параметра а уравнение log (4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4 x 2 – 4 a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

4∙ 0 2 — 4 a + a 2 +7 = (0 2 + 2) 2 ,

1) a 1 = 1. Тогда уравнение имеет вид: log (4 x 2 +4) =2. Решаем его

4 x 2 + 4 = (х 2 + 2) 2 , 4 x 2 + 4 = х 4 + 4 x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log (4 x 2 +4) =2 х = 0 – единственный корень.

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – ( р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7рх 2 + 2х 2 – 14 рх — 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – ( р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = — 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2 р = — 1; если х 1 = х 2 = — 1, то р + 3 = — 1 – 1 = — 2 р = — 5. Проверим являются ли корни уравнения х 2 – ( р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = — 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ ( — 1) ∙ 1 – 3 ∙ 1 + 21 ∙ ( — 1) = 0 ≤ 0 – верно; для случая р = — 5, х1 = х2 = — 1 имеем ( — 1) 3 – 7 ∙ ( — 5) ∙ ( -1) 2 + 2 ∙ (-1) 2 – 14 ∙ ( -5) × ( — 1) – 3 ∙ ( — 1) + 21∙ ( -5 ) = — 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = — 1 и р = — 5.

Пример 4. Найдите все положительные значения параметра а, при которых число 1 принадлежит области определения функции

у = ( аа ).

Решение. у = ( аа ). Область определения данной функции составляют все значения х, для которых аа ≥ 0.

Если значения х = 1 принадлежит области определения, то должно выполняться неравенство а а ≥ 0, а а (1)

Таким образом, необходимо найти все а > 0, удовлетворяющие неравенству (1).

1) а = 1 удовлетворяет неравенству (1).

2) При а > 1 неравенство (1) равносильно неравенству 2 + 5аа 2 +6,

а 2 — 5а + 4 ≤ 0. Решение этого неравенства: 1≤ а ≤ 4. Учитывая условие а >1, получим 1

а 2 — 5а + 4 ≥ 0. Его решение а ≤ 1; а ≥ 4 с учетом условия 0


источники:

http://sigma-center.ru/inequality_with_parametr

http://infourok.ru/uchebnoe_posobie_uravneniya_i_neravenstva_s_parametrami-415388.htm