Как сделать из уравнения функцию

График линейной функции, его свойства и формулы

О чем эта статья:

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

если х = 0, то у = -2;

если х = 2, то у = -1;

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

х024
y-2-10

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.

Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:

Таким образом, нам надо построить график функции y = -4x — 10

Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).

Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Вычтем из второго уравнения системы первое, и получим k = 3.

Подставим значение k в первое уравнение системы, и получим b = -2.

Ответ: уравнение прямой y = 3x — 2.

Выразить переменную из уравнения

При решении систем линейных уравнений с многими переменными возникает частая необходимость выражения из уравнения той или иной переменной.

Как это делается? Возьмем для примера уравнение 2x+10y+3z=10. В нем наличествуют три переменных X, Y, Z. При помощи онлайнового калькулятора в зависимости от потребности выражения той или иной переменной уравнение 2x+10y+3z=10 преобразуется:
— через z в уравнение вида z = (-2x-10y+10)/(+3);
— через y в уравнение вида y = (-2x-3z+10)/(+10);
— через x в уравнение вида x= (-10y-3z+10)/(+2).

Полученное значение переменной X, Y или Z можно подставлять в следующее уравнение системы. В результате в нем будет на одну неизвестную переменную меньше. Выражение переменной из уравнений требуется при решении задач линейного программирования, направленных на выяснение значений показателей эффективности (целевой функции) в самых различных направлениях.

Решение систем линейных уравнений требуется для целей определения важных показателей сложных практических производственных и иных задач:
— загрузки оборудования,
— планирования производств,
— составления пищевого рациона откармливаемых животных,
— использования сырья и пр.

Решение функциональных уравнений методом подстановки

Заменяя некоторые переменные функционального уравнения либо конкретными значениями, либо какими-либо другими выражениями пытаемся либо упростить это уравнение, либо привести его к такому виду, что дальнейшее решение станет очевидным. Особенность применяемого метода как раз и состоит в том, что в ряде случаев он позволяет отыскать решения в классе всевозможных функций.

1. Найдите все функции, определённые на множестве , удовлетворяющие соотношению .

Решение:

Придадим x значение . Получим

.

Отсюда .

Получим систему

Из уравнения (1) выразим и подставим в уравнение (2).

; ;

Отсюда ;

;

.

Проверим, действительно ли функция f(x) удовлетворяет уравнению .

Ответ: .

2. Найти функцию, удовлетворяющую уравнению

Решение:

2) Подставим в исходное уравнение, получим

3)Заменим z на получим

или после преобразований в правой части уравнения:

4)Итак, получили два уравнения:

5)Умножим обе части 1-го уравнения на (-2) и сложим со 2-ым уравнением, получим:

3.Пусть — некоторое действительное число. Найти функцию f(x), определённую для всех x ≠ 1 и удовлетворяющую уравнению

,где g – заданная функция, определённая при x ≠ 1.

Решение:При замене

получаем систему

.

решением которой при a 2 ≠ 1 является функция

Ответ:

4.Найти решение системы функциональных уравнений относительно неизвестных функций f(x) и g(x):

Решение:

В первом уравнении сделаем подстановку 2x = 1/z.

и первое уравнение принимает вид:

или

В результате получаем систему уравнений:

решение которой g(x) = 1/x, f(x) = x+1.

Ответ:g(x) = 1/x, f(x) = x+1.

5.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению f(х+у)=х+уf(х)+(1-х)у. (1)

Решение:

Пусть f − функция удовлетворяющая уравнению (1). Поскольку (1) выполняется при всех значениях переменных х и у, то оно будет выполнятся и при конкретных значениях этих переменных. Подставив, например, у = 0 в исходное уравнение, мы получим f(х)=х. Это равенство должно выполнятся при любом действительном х.

Таким образом, (1) => f(х)≡х или, иными словами, никакая функция кроме f(х)≡х не может удовлетворять уравнению (1). Это, тем не менее, не доказывает, что функция f(х)≡х является решением функционального уравнения (1). Непосредственная проверка показывает, что найденная функция действительно удовлетворяет уравнению при всех х,у ? R.

6.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению f(х+у)=х+уf(х)+(1-sin х)у. (2)

Решение:

Точно также, как и в предыдущей задаче, устанавливаем, что для функции f, которая удовлетворяет (2), должно выполнятся тождество f(х)≡х. Однако, подставив функцию f(х)=х в (2), мы тождества не получим. Поскольку никакие другие функции также не могут быть решениями (2), то данное уравнение решений не имеет.

7.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению

f(х+у 2 +2у+1) = у 4 +4у 3 +2ху 2 +5у 2 +4ху+2у+х 2 +х+1. (3)

Решение:

Поскольку мы хотим получить значение f(х), попробуем избавится от слагаемого у 2 +2у+1 под знаком функции. Уравнение у 2 +2у+1=0 имеет одно решение у=-1. Подставляя у= -1 в (3) получаем f(х)= х 2 -х+1 .

Ответ: f(х)= х 2 -х+1.

8.Найдите все функции f: R à R, которые при всех х, у ? R удовлетворяют уравнению

f((х 2 +6х+6)у)=у 2 х 4 +12у 2 х 3 +48у 2 х 2 -4ух 2 +72у 2 х-24ух+36у 2 -24 (4)

Решение:

Как и в прошлой задаче, мы хотим получить под знаком функции свободную переменную (х или у). В данном случае, очевидно, проще получить у. Решив уравнение х 2 +6х+6)у=0 относительно х получаем х1= -1, х2= -5. Подстановка любого из этих значений в (4) дает нам f(у)=у 2 -4у.

9.Решите следующие функциональные уравнения.

в) f(x+y)+f(x-y)=2f(x)cos y

Решение:

а) Положим у=1/x. Тогда f(1/y) + 2f(y) =3/y и f(y)+2f(1/y)=3y. Отсюда f(y)= 2/y – y.

б) Положим y=x-1/x , затем z=y-1/y. Получим систему трёх линейных уравнений относительно f(x), f(y), f(z), з которой находим

в) Положив у=π/2, получаем f(х+π/2) +f(x-π/2)=0 для любого х, откуда f(x+π)= — f(x). Заменив у на у+π/2, получаем

заменив теперь х- π/2 на х, имеем:

и с учетом предыдущего:

Положив х=0, получаем отсюда и из исходного уравнения:

Таким образом, искомая функция должна иметь вид a cos y +b sin y, где a,b – константы.

10.

Решение: 1) Заменим на , получим или .

2)Умножим обе части уравнения из п.1 на (-2) и сложим с исходным уравнением:

11. 2

Решение: 1)Заменим в уравнении на , получим 2 .

2) Умножим обе части исходного уравнения 2 на (-2) и сложим с уравнением 2 ,

получим:

12.

Решение:

1) Заменим в уравнение на , .

2)Умножим уравнение на и вычтем из уравнения , получим —

, где а

13.

Решение:

1)Заменим в уравнении на получим .

2)Выразим из исходного уравнения , получим

или .

3)Подставим в уравнение , получим .

14.

Решение:

1.Заменим на , получим

2.Умножим обе части уравнения на и вычтем из уравнения

15.

Решение:1)Пусть , тогда уравнение принимает вид:

2)Пусть тогда исходное уравнение принимает вид:

3)Умножим обе части уравнения из п.1 на 2, а обе части уравнения из п.2 на (-3) и почленно сложим получившиеся уравнения:

16.

Решение:

1) Заменим на , получим или .

2)Умножим обе части уравнения из п.1 на (-2) и сложим с исходным уравнением:


источники:

http://allcalc.ru/node/853

http://megalektsii.ru/s5548t2.html