Как сделать уравнение по физике

Уравнения математической физики в действии

Сегодня поговорим о примерах в дисциплине уравнения математической физики общими словами без погружения в сухой, академический язык и множества формул.

По шкале сложности для чистой математики эта дисциплина на мой субъективный взгляд получает 7/10. Но это не значит, что эти формулы легки для зазубривания и запоминания. Тем более говорить о том, что я могу сделать открытие в данной области которое попадет в учебники, например объясняя физику какого — либо нового процесса или уточняя уже существующий. Если подумать, то, например выбирая какой-либо параграф учебника по данному предмету, то он исписан формулами, которые если провести аналогию похож на модуль по программированию. Скажу сразу мне преподавали данный предмет очень плохо, не объясняя, что данные формулы значат, точнее заглавие было например: «Уравнение волны» или «Колебание мембраны», а дальше переписывали все формулы в параграфе с короткими комментариями что откуда, весьма скудными в полной тишине. Препод перелистывал страницы презентации и ходил туда-обратно пока мы переписывали. Видно, что не ему, ни мне это было не нужно, как бы для общего развития. Скорее всего надо было читать дополнительную литературу чтобы понять, но там уровень для подкованного студента, предметов было много и где-то были пробелы и особо не было времени на все распылиться. Ну это так, к слову. К слову, чем больше людей надо учить в промежутке времени, тем меньше времени уделяется каждому студенту и тем хуже уровень знаний у каждого студента, ну это в пределе.

Ну это было уже давно, лекций не осталось, практика забылась, из головы все выветрилось как талая вода. Вот пример волны наглядный:

Волна

Как бы это уравнение бегущей волны с незакрепленными концами. Я мало что знаю об волнах, даже на уровне физики школьного курса, что-то типа амплитуды, периода, волнового числа и всего такого. Волны бывают продольные, поперечные, сферические, спиральные и другие. Это я только что прочитал на википедии.

Данный код ниже представляет практический интерес.

Как видите есть две функции, ksi и fi, они заданы тригонометрическими функциями sin, cos. Они характеризуют нашу волну. Там же есть аргументы функций 15*x и 18*x. Если, например увеличивать число 15 или число 18, то количество холмов будет увеличиваться, по-умному это значит, что чем большее число мы впишем в скобки, тем самым мы увеличиваем количество периодов функций данных, которые уместятся в заданный промежуток числа x. При увеличении будет сжиматься график вдоль оси Ox.

Икс то мы не увеличивали, шаг остался тем же около 0.01. Если мы будем уменьшать данные аргументы, то количество полных периодов функций будет меньше и как бы график растянется вдоль оси Ox.

А если мы вынесем за скобки и будем увеличивать/уменьшать само значение функции, как на коде выше, то будет растягиваться/сжиматься вдоль оси ординат, то есть вдоль оси Oy. Что показано на графиках ниже.

Здесь растяжение настолько большое что не вмещается в рабочее пространство и надо увеличивать рабочее пространство сцены и отдалять наблюдательное око.

А ниже наоборот сжатие относительно оси ординат.

Дело в том, я вот заметил, что каждое объяснение волн очень сложное, трудно выстроить в голове какие-либо упорядоченные знания об этом. Но я решил, что буду заниматься теперь только самыми насущными вещами, а не чтением гуманитарных статеек в интернете. Я очень много времени потратил на безделье и чтение всяких новостей, я превратился в гуманитария и не заметил.

С другой стороны, а как реализовать эти знания и монетизировать их? Не думаю, что есть вакансии, с требованием к программисту рисовать волны в браузере.

А вот второй пример посложнее, где уравнение окружность:

Волновая окружность

Хотелось сделать такой круг с волнами в виде, который похож на ютубе видел, как анимация голосовых волн от микрофона, но не получилось.

Здесь также можно увеличивать аргумент или/и значение функции и будет весьма интересно просмотреть результат.

Перейдем к следующему примеру, это концентрические окружности с волновым движением по оси Y:

Псевдо-мембрана

Чем-то похоже на изделие №1. Тот же принцип, но уже по массиву колец изменяется график, все кольцо увеличивается и уменьшается на одно значение, а другое кольцо уже на другое.

Чтобы улучшить вид, надо уменьшить шаг до тысячной доли, увеличить размер массива vertices в 10 раз, тогда не будет видно разрезов и будет идеально.

Глаз в положении 0,0,2

Резюмируя, хочу сказать вот многие говорили: «Зачем эти синусы и косинусы нужны?»

Вот для этого и многих других вещей, я, например написал об этом здесь, кто-то еще что-то придумает получше. Хотя трудно найти веб-программиста-математика-физика-художника, адская смесь получается.

Да, статья получилась не особо научной и в некотором роде объективной, но надо было чем-то заполнить пространство между картинками, спасибо у меня все!

Секреты решения задач ЕГЭ по физике

Вариант ЕГЭ по физике состоит из двух частей и включает в себя 32 задания.

В части 1 содержится 24 задания с кратким ответом, в которых ответ записывается в виде числа, двух чисел или слова, а также задания на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.

Часть 2 содержит 8 заданий. Из них два задания с кратким ответом (25 и 26) и шесть заданий (27–32), для которых необходимо привести развернутый и обоснованный ответ.

В первой части – не только формулы и графики. Есть и необычные задания.

В задании 22 вы увидите фотографии или рисунки измерительных приборов. Чтобы сделать это задание, нужно уметь записывать показания приборов при измерении физических величин с учётом абсолютной погрешности измерений.

Задание 23 проверяет умение выбирать оборудование для проведения опыта по заданной гипотезе.

Завершает первую часть задание по астрономии на выбор нескольких утверждений из пяти предложенных.

Вторая часть работы посвящена решению задач: семи расчётных и одной качественной задачи.

Они распределяются по разделам следующим образом: 2 задачи по механике, 2 задачи по молекулярной физике и термодинамике, 3 задачи по электродинамике, 1 задача по квантовой физике.

Задания 25 и 26 – это расчётные задачи с кратким ответом. Задание 25 по молекулярной физике или электродинамике, а задача 26 – по квантовой физике.

Далее идут задания с развёрнутым ответом. Задание 27 – качественная задача, в которой решение представляет собой объяснение какого-либо факта или явления, основанное на физических законах и закономерностях. Качественная задача может быть по любому из разделов курса физики.

Следующие задачи строго распределены по определенным разделам физики.

Задание 28 – по механике или по молекулярной физике,

задание 29 – по механике,

задание 30 – по МКТ и термодинамике,

задание 31 – по электродинамике,

задание 32 – преимущественно по оптике.

Для расчётных задач высокого уровня сложности (29–32) требуется анализ всех этапов решения. Здесь необходимо пользоваться большим числом законов и формул, вводить дополнительные обоснования в процессе решения. Способ решения задачи надо выбрать самостоятельно.

На нашем сайте размещены статьи по каждой задаче ЕГЭ. В них приведены не только типовые задания ЕГЭ по физике, но и показан подробный ход рассуждений, приводящих к решению задач. Каждое задание сопровождается ссылкой на необходимую теорию.

Рассказано о секретах решения каждой задачи ЕГЭ по физике.

Задание 1 Кинематика. Равномерное прямолинейное движение, равноускоренное прямолинейное движение, движение по окружности.

Задание 2 Силы в природе, законы Ньютона. Закон всемирного тяготения, закон Гука, сила трения

Задание 3 Закон сохранения импульса, кинетическая и потенциальные энергии, работа и мощность силы, закон сохранения механической энергии

Задание 4 Механическое равновесие, механические колебания и волны. Условие равновесия твёрдого тела, закон Паскаля, сила Архимеда,

Задание 5 Механика. Объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков

Задание 6 Механика. Изменение физических величин в процессах.

Задание 7 Механика. Установление соответствия между графиками и физическими величинами, между физическими величинами и формулами.

Задание 8 Основы термодинамики. Тепловое равновесие. Уравнение Клапейрона-Менделеева. Изопроцессы.

Задание 9 Термодинамика. Работа в термодинамике, первый закон термодинамики, КПД тепловой машины

Задание 10 Термодинамика, тепловое равновесие. Относительная влажность воздуха, количество теплоты

Задание 11 Термодинамика и молекулярно-кинетическая теория. Объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков.

Задание 12 Термодинамика и молекулярно-кинетическая теория. Изменение физических величин в процессах; установление соответствия между графиками и физическими величинами, между физическими величинами и формулами.

Задание 13 Электрическое поле, магнитное поле. Принцип суперпозиции электрических полей, магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца

Задание 14 Электричество. Закон сохранения электрического заряда, закон Кулона, конденсатор, сила тока, закон Ома для участка цепи, последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля – Ленца

Задание 15 Электричество, магнетизм и оптика. Поток вектора магнитной индукции, закон электромагнитной индукции Фарадея, индуктивность, энергия магнитного поля катушки с током, колебательный контур, законы отражения и преломления света, ход лучей в линзе

Задание 16 Электродинамика. Объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков

Задание 17 Электродинамика и оптика. Изменение физических величин в процессах

Задание 18 Электродинамика, оптика, специальная теория относительности. Установление соответствия между графиками и физическими величинами, между физическими величинами и формулами

Задание 19 Ядерная физика. Планетарная модель атома. Нуклонная модель ядра. Ядерные реакции.

Задание 20 Линейчатые спектры, фотоны, закон радиоактивного распада.

Задание 21 Квантовая физика. Изменение физических величин в процессах. Установление соответствия между графиками и физическими величинами, между физическими величинами и формулами

Задание 22 Механика — квантовая физика, методы научного познания

Задание 23 Механика — квантовая физика, методы научного познания

Задание 24 Элементы астрофизики. Солнечная система, звёзды, галактики

Задание 25 Молекулярная физика, термодинамика, электродинамика. Расчётная задача

Задание 26 Электродинамика, квантовая физика. Расчётная задача

Задание 27 Механика — квантовая физика. Качественная задача

Задание 28 Механика — квантовая физика. Расчётная задача

Задание 29 Механика. Расчетная задача

Задание 30 Молекулярная физика. Расчетная задача

Задание 31 Электродинамика. Расчетная задача

Задание 32 Электродинамика. Квантовая физика. Расчетная задача

Как сделать уравнение по физике

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v0, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной из формул:

Динамика

Второй закон Ньютона:

Здесь: F — равнодействующая сила, которая равна сумме всех сил действующих на тело:

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Третий закон Ньютона (сила действия равна силе противодействия):

Общий коэффициент жесткости параллельно соединённых пружин:

Общий коэффициент жесткости последовательно соединённых пружин:

Сила трения скольжения (или максимальное значение силы трения покоя):

Закон всемирного тяготения:

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Где: g — ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Скорость спутника на круговой орбите:

Первая космическая скорость:

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

Статика

Момент силы определяется с помощью следующей формулы:

Условие при котором тело не будет вращаться:

Координата центра тяжести системы тел (аналогичные уравнения для остальных осей):

Гидростатика

Определение давления задаётся следующей формулой:

Давление, которое создает столб жидкости находится по формуле:

Но часто нужно учитывать еще и атмосферное давление, тогда формула для общего давления на некоторой глубине h в жидкости приобретает вид:

Идеальный гидравлический пресс:

Любой гидравлический пресс:

КПД для неидеального гидравлического пресса:

Сила Архимеда (выталкивающая сила, V — объем погруженной части тела):

Импульс

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

Работа, мощность, энергия

Механическая работа рассчитывается по следующей формуле:

Самая общая формула для мощности (если мощность переменная, то по следующей формуле рассчитывается средняя мощность):

Мгновенная механическая мощность:

Коэффициент полезного действия (КПД) может быть рассчитан и через мощности и через работы:

Формула для кинетической энергии:

Потенциальная энергия тела поднятого на высоту:

Потенциальная энергия растянутой (или сжатой) пружины:

Полная механическая энергия:

Связь полной механической энергии тела или системы тел и работы внешних сил:

Закон сохранения механической энергии (далее – ЗСЭ). Как следует из предыдущей формулы, если внешние силы не совершают работы над телом (или системой тел), то его (их) общая полная механическая энергия остается постоянной, при этом энергия может перетекать из одного вида в другой (из кинетической в потенциальную или наоборот):

Молекулярная физика

Химическое количество вещества находится по одной из формул:

Масса одной молекулы вещества может быть найдена по следующей формуле:

Связь массы, плотности и объёма:

Основное уравнение молекулярно-кинетической теории (МКТ) идеального газа:

Определение концентрации задаётся следующей формулой:

Для средней квадратичной скорости молекул имеется две формулы:

Средняя кинетическая энергия поступательного движения одной молекулы:

Постоянная Больцмана, постоянная Авогадро и универсальная газовая постоянная связаны следующим образом:

Следствия из основного уравнения МКТ:

Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева):

Газовые законы. Закон Бойля-Мариотта:

Универсальный газовый закон (Клапейрона):

Давление смеси газов (закон Дальтона):

Тепловое расширение тел. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

Термодинамика

Количество теплоты (энергии) необходимое для нагревания некоторого тела (или количество теплоты выделяющееся при остывании тела) рассчитывается по формуле:

Теплоемкость (С — большое) тела может быть рассчитана через удельную теплоёмкость (c — маленькое) вещества и массу тела по следующей формуле:

Тогда формула для количества теплоты необходимой для нагревания тела, либо выделившейся при остывании тела может быть переписана следующим образом:

Фазовые превращения. При парообразовании поглощается, а при конденсации выделяется количество теплоты равное:

При плавлении поглощается, а при кристаллизации выделяется количество теплоты равное:

При сгорании топлива выделяется количество теплоты равное:

Уравнение теплового баланса (ЗСЭ). Для замкнутой системы тел выполняется следующее (сумма отданных теплот равна сумме полученных):

Если все теплоты записывать с учетом знака, где «+» соответствует получению энергии телом, а «–» выделению, то данное уравнение можно записать в виде:

Работа идеального газа:

Если же давление газа меняется, то работу газа считают, как площадь фигуры под графиком в pV координатах. Внутренняя энергия идеального одноатомного газа:

Изменение внутренней энергии рассчитывается по формуле:

Первый закон (первое начало) термодинамики (ЗСЭ):

Для различных изопроцессов можно выписать формулы по которым могут быть рассчитаны полученная теплота Q, изменение внутренней энергии ΔU и работа газа A. Изохорный процесс (V = const):

Изобарный процесс (p = const):

Изотермический процесс (T = const):

Адиабатный процесс (Q = 0):

КПД тепловой машины может быть рассчитан по формуле:

Где: Q1 – количество теплоты полученное рабочим телом за один цикл от нагревателя, Q2 – количество теплоты переданное рабочим телом за один цикл холодильнику. Работа совершенная тепловой машиной за один цикл:

Наибольший КПД при заданных температурах нагревателя T1 и холодильника T2, достигается если тепловая машина работает по циклу Карно. Этот КПД цикла Карно равен:

Абсолютная влажность рассчитывается как плотность водяных паров (из уравнения Клапейрона-Менделеева выражается отношение массы к объему и получается следующая формула):

Относительная влажность воздуха может быть рассчитана по следующим формулам:

Потенциальная энергия поверхности жидкости площадью S:

Сила поверхностного натяжения, действующая на участок границы жидкости длиной L:

Высота столба жидкости в капилляре:

При полном смачивании θ = 0°, cos θ = 1. В этом случае высота столба жидкости в капилляре станет равной:

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h 8 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Оптика

Оптическая длина пути определяется формулой:

Оптическая разность хода двух лучей:

Условие интерференционного максимума:

Условие интерференционного минимума:

Формула дифракционной решетки:

Закон преломления света на границе двух прозрачных сред:

Постоянную величину n21 называют относительным показателем преломления второй среды относительно первой. Если n1 > n2, то возможно явление полного внутреннего отражения, при этом:

Формула тонкой линзы:

Линейным увеличением линзы Γ называют отношение линейных размеров изображения и предмета:

Атомная и ядерная физика

Энергия кванта электромагнитной волны (в т.ч. света) или, другими словами, энергия фотона вычисляется по формуле:

Формула Эйнштейна для внешнего фотоэффекта (ЗСЭ):

Максимальная кинетическая энергия вылетающих электронов при фотоэффекте может быть выражена через величину задерживающего напряжение Uз и элементарный заряд е:

Существует граничная частота или длинна волны света (называемая красной границей фотоэффекта) такая, что свет с меньшей частотой или большей длиной волны не может вызвать фотоэффект. Эти значения связаны с величиной работы выхода следующим соотношением:

Второй постулат Бора или правило частот (ЗСЭ):

В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

На любой орбите в атоме водорода кинетическая (К) и потенциальная (П) энергии электрона связаны с полной энергией (Е) следующими формулами:

Общее число нуклонов в ядре равно сумме числа протонов и нейтронов:

Энергия связи ядра выраженная в единицах СИ:

Энергия связи ядра выраженная в МэВ (где масса берется в атомных единицах):

Закон радиоактивного распада:

Ядерные реакции

Для произвольной ядерной реакции описывающейся формулой вида:

Выполняются следующие условия:

Энергетический выход такой ядерной реакции при этом равен:

Основы специальной теории относительности (СТО)

Релятивистское сокращение длины:

Релятивистское удлинение времени события:

Релятивистский закон сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения:

Релятивистский закон сложения скоростей. Если же тела движутся в одном направлении, то их относительная скорость:

Энергия покоя тела:

Любое изменение энергии тела означает изменение массы тела и наоборот:

Полная энергия тела:

Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Релятивистское увеличение массы:

Кинетическая энергия тела, движущегося с релятивистской скоростью:

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Равномерное движение по окружности

В качестве дополнения, в таблице ниже приводим всевозможные взаимосвязи между характеристиками тела равномерно вращающегося по окружности (T – период, N – количество оборотов, v – частота, R – радиус окружности, ω – угловая скорость, φ – угол поворота (в радианах), υ – линейная скорость тела, an – центростремительное ускорение, L – длина дуги окружности, t – время):

Расширенная PDF версия документа «Все главные формулы по школьной физике»:

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.


источники:

http://ege-study.ru/materialy-ege/sekrety-resheniya-ege-po-fizike/

http://educon.by/index.php/formuly/formfiz