Как сделать замену в дифференциальном уравнении

Математический портал

Nav view search

Navigation

Search

  • Вы здесь:
  • Home
  • Математический анализ
  • Замена переменных в дифференциальных выражениях.

Замена переменных в дифференциальных выражениях.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Часто в дифференциальных выражениях входящие в них производные по одним переменным необходимо выразить через производные по новым переменным.

Примеры.

7.165. Преобразовать уравнение $$x^4\frac+2x^3\frac-y=0,$$ полагая $x=\frac<1>.$

Решение.

Подставим найденные значения производных и выражение $x=\frac<1>$ в заданное уравнение.

Ответ: $\frac-y=0.$

7.167. Преобразовать уравнение $$3\left(\frac\right)^2-\frac\frac-\frac\left(\frac\right)^2=0,$$ приняв $y$ за аргумент.

Решение.

Выразим производные от $y$ по $x$ через производные от $x$ по $y:$ $$\frac=\frac<1><\frac>,$$

Подставим полученные выражения производных в заданное уравнение. Получаем

Таким образом, получили ответ.

7.168. Преобразовать уравнение $$(xy’-y)^2=2xy(1+y’^2),$$ перейдя к полярным координатам.

Решение.

$$dx=\cos\varphi dr-r\sin\varphi d\varphi,\qquad dy=\sin\varphi dr+r\cos\varphi d\varphi,$$

$$r^4 d\varphi^2=r^2\sin2\varphi dr^2+r^4\sin 2\varphi d\varphi^2\Rightarrow$$

$$\sin2\varphi dr^2=(1-\sin 2\varphi)r^2 d\varphi^2 \Rightarrow\left(\frac\right)^2=\frac<1-\sin 2\varphi> <\sin 2\varphi>r^2\Rightarrow$$

7.170. Преобразовать уравнение $$(x+y)\frac<\partial z><\partial x>-(x-y)\frac<\partial z><\partial y>=0,$$ перейдя к новым независимым переменным $u$ и $v,$ если $u=\ln\sqrt,\,\, v=arctg\frac.$

Решение.

Выразим частные производные от $z$ по $x$ и $y$ через частные производные от $z$ по $u$ и $v.$

Подставим найденные выражения производных в заданное уравнение:

7.174. Преобразовать уравнение $$(xy+z)\frac<\partial z><\partial x>+(1-y^2)\frac<\partial z><\partial y>=x+yz,$$ приняв за новые независимые переменные $u=yz-x,\,\, v=xz-y$ и за новую функцию $w=xy-z.$

Решение.

$$ ydx+xdy-dz =\frac<\partial w><\partial u>\cdot \left(-dx+zdy+ydz\right) +\frac<\partial w><\partial v>\cdot \left(zdx+xdz-dy \right)\Rightarrow$$

Подставим найденные выражения $\frac<\partial z><\partial x>$ и

$\frac<\partial z><\partial y>$ в заданное уравнение. Получим

Замена переменных

Выражения, содержащие различные функции и их производные, постоянно встречаются в математике и ее приложениях. Целесообразность перехода к новым независимым переменным, а иногда и к новым функциям, основана как на особой роли новых переменных в изучаемом вопросе, так и на упрощениях, к которым приводит выбранная замена переменных.
Техника замены переменных основана на правилах дифференцирования сложных функций и функций, заданных неявно при помощи уравнений. Такая техника будет продемонстрирована на нескольких достаточно содержательных примерах. Обоснование всех условий, при выполнении которых замена переменных будет законной, в большинстве примеров не представляет труда и поэтому не обсуждается.

В уравнении \(\displaystyle x^2+\frac+x\frac+y=0\) сделать замену независимой переменной \(x=e^t\).

\(\triangle\) Если \(z(t) = y(e^t)\), то, применяя правило нахождения производной сложной функции, получаем
$$
\frac=e^t\frac=x\frac,\nonumber
$$
откуда \(\displaystyle \frac=x\frac\).

Заметим, что уравнение \(\displaystyle \frac+z=0\) является уравнением гармонических колебаний, а его решением является \(z=C_<1>\sin t + C_2\cos t\). Поэтому при \(x > 0\) решение исходного уравнения имеет следующий вид: \(y= C_1 \sin (\ln x) + C_2\cos (\ln x)\). Так как уравнение не изменяет своего вида при замене \(x\) на \(-x\), то при любом \(x\in R, \ x\neq 0\), решение имеет следующий вид:
$$
y(x)=C_1\sin(\ln |x|) + C_2\cos(\ln |x|).\qquad\blacktriangle\nonumber
$$

В системе уравнений:
$$
\left\<\begin\displaystyle\frac=y-2kx(x^2+y^2),\\\displaystyle\frac=-x-2kx(x^2+y^2),\\\displaystyle k > 0,\end\right.\nonumber
$$
перейти к полярным координатам.

\(\triangle\) Умножим первое уравнение на \(x\), второе на \(y\) и сложим. Аналогично умножим первое уравнение на \(y\) и вычтем из него второе уравнение, умноженное на \(x\). Получим новую систему уравнений, при \(x^2+y^2 > 0\) эквивалентную исходной системе уравнений,
$$
\left\<\begin\displaystyle x\frac+y\frac=-2k(x^2+y^2)^2,\\\displaystyle y\frac-x\frac=y^2+x^2.\end\right.\label
$$

Но \(x^2+y^2=r^2\), \(x=r\cos\varphi\), \(y=r\sin\varphi\). Поэтому систему \eqref можно записать в виде:
$$
\left\<\begin\displaystyle r\frac=-2kr^4,\\\displaystyle\frac=1.\end\right.\Longleftrightarrow\left\<\begin\displaystyle\frac=-2kr^3,\\\displaystyle\frac=1.\end\right.\label
$$

Заметим, что система \eqref легко решается. Получаем решение в виде:
$$
r=\frac<1><\sqrt>,\quad \varphi=\varphi_0+t\quad (-t_0 Пример 3.

Преобразовать уравнение \(y’y»’-3(y»)^2=x\), принимая \(y\) за независимую переменную, а \(x\) — за неизвестную функцию.

Таким образом, при \(y’\neq 0\) уравнение преобразуется к виду \(x»’+x(x’)^5=0\). Это частный случай уравнения общего вида \(x»’=\Phi(y,x,x’,x»)\) с непрерывно дифференцируемой в \(R^4\) функцией \(\Phi(y,u,v,w)\). Уравнения такого типа хорошо изучены в теории обыкновенных дифференциальных уравнений. Исходное уравнение не имело стандартного вида. \(\blacktriangle\)

Преобразовать выражение \(\omega=\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>\) к полярным координатам, полагая \(x=r\cos\varphi, \ y=r\sin\varphi\). Найти решение уравнения Лапласа \(\displaystyle \frac<\partial^2 u><\partial x^2>+\frac<\partial^2 u><\partial y^2>=0\), зависящее только от полярного радиуса \(r\).

Пусть \(u=v(r)\) есть решение уравнения Лапласа, зависящее только от \(r\). Тогда функция \(v(r)\) должна быть решением дифференциального уравнения
$$
\frac<\partial^2v><\partial r>+\frac1r\frac<\partial v><\partial r>=0\quad\Longleftrightarrow\quad\frac\left(r\frac\right)=0\nonumber
$$
$$
r\frac=C,\quad\Longrightarrow\quad v=C_1\ln r+C_2,\label
$$
где \(C_1\) и \(C_2\) — произвольные постоянные. \(\blacktriangle\)

Сделать в уравнении колебаний струны
$$
\frac<\partial^2u><\partial t^2>-a^2\frac<\partial^2u><\partial x^2>=0,\quad a > 0,\quad -\infty Решение.

Решение уравнения \(\displaystyle\frac<\partial^2\omega><\partial\xi\partial\eta>=0\) легко находится. Так как \(\displaystyle\frac\partial<\partial\xi>\left(\frac<\partial\omega><\partial\eta>\right)=0\), то \(\displaystyle\frac<\partial\omega><\partial\eta>=\varphi(\eta)\), где \(\varphi(\eta)\) — произвольная непрерывная функция \(\eta\).

Пусть \(\Phi(\eta)\) есть ее первообразная на \(R\). Тогда, интегрируя уравнение \(\omega_<\eta>=\varphi(\eta)\), получаем, что \(\omega=\Phi(\eta)+\Psi(\xi)\), где \(\Psi(\xi)\) — произвольная функция.

Если считать, что функции \(\Phi(\eta)\) и \(\Psi(\xi)\) есть непрерывно дифференцируемые функции, то общее решение уравнения \eqref имеет следующий вид:
$$
u(x,t)=\Psi(x-at)+\Phi(x+at).\quad\blacktriangle\nonumber
$$

Примеры решения дифференциальных уравнений с ответами

Простое объяснение принципов решения дифференциальных уравнений и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения дифференциальных уравнений

Дифференциальные уравнения не так сильно отличаются от привычных уравнений, где необходимо найти переменную x , как кажется на первый взгляд. Всё различие лишь в том, что в дифференциальных уравнениях мы ищем не переменную, а функцию у(х) , с помощью которой можно обратить уравнение в равенство.

Дифференциальное уравнение – это уравнение, содержащее саму функцию (y=y(x)), производные функции или дифференциалы (y′, y″) и независимые переменные (наиболее распространённая – х). Обыкновенным дифференциальным уравнением называют уравнение, в котором содержится неизвестная функция под знаком производной или под знаком дифференциала.

Чтобы решить ДУ, необходимо найти множество всех функций, которые удовлетворяют данному уравнению. Это множество в большинстве случаев выглядит следующим образом:y=f(x; С), где С – произвольная постоянная.

Проверить решённое ДУ можно, подставив найденную функцию в изначальное уравнение и убедившись, что уравнение обращается в тождество (равенство).

Примеры решения дифференциальных уравнений

Задание

Решить дифференциальное уравнение xy’=y.

Решение

В первую очередь, необходимо переписать уравнение в другой вид. Пользуясь

переписываем дифференциальное уравнение, получаем

Дальше смотрим, насколько реально разделить переменные, то есть путем обычных манипуляций (перенос слагаемых из части в часть, вынесение за скобки и пр.) получить выражение, где «иксы» с одной стороны, а «игреки» с другой. В данном уравнении разделить переменные вполне реально, и после переноса множителей по правилу пропорции получаем

Далее интегрируем полученное уравнение:

В данном случае интегралы берём из таблицы:

После того, как взяты интегралы, дифференциальное уравнение считается решённым. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения.

– это общий интеграл. Также для удобства и красоты, его можно переписать в другом виде: y=Cx, где С=Const

Ответ

Задание

Найти частное решение дифференциального уравнения

Решение

Действуем по тому же алгоритму, что и в предыдущем решении.

Переписываем производную в нужном виде, разделяем переменные и интегрируем полученное уравнение:

Получили общий интеграл.Далее, воспользуемся свойством степеней, выразим у в «общем» виде и перепишем функцию:

Если – это константа, то

0\]» title=»Rendered by QuickLaTeX.com» />

– тоже некоторая константа, заменим её буквой С:

– убираем модуль и теперь константа может принимать и положительные, и отрицательные значения.

Получаем общее решение:

Ответ

Задание

Решить дифференциальное уравнение

Решение

В первую очередь необходимо переписать производную в необходимом виде:

Второй шаг – разделение переменных и перенос со сменой знака второго слагаемого в правую часть:

После разделения переменных, интегрируем уравнение, как в примерах выше.

Чтобы решить интегралы из левой части, применим метод подведения функции под знак дифференциала:

В ответе мы получили одни логарифмы и константу, их тоже определяем под логарифм.

Далее упрощаем общий интеграл:

Приводим полученный общий интеграл к виду: F(x,y)=C:

Чтобы ответ смотрелся красивее, обе части необходимо возвести в квадрат.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(0)=ln2.

Решение

Первый шаг – нахождение общего решения. То, что в исходном уравнении уже находятся готовые дифференциалы dy и dx значительно упрощает нам решение.

Начинаем разделять переменные и интегрировать уравнение:

Мы получили общий интеграл и следующий шаг – выразить общее решение. Для этого необходимо прологарифмировать обе части. Знак модуля не ставим, т.к. обе части уравнения положительные.

Получаем общее решение:

Далее необходимо найти частное решение, которое соответствует заданному начальному условию y(0)=ln2.

В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Задание

Решить дифференциальное уравнение

Решение

При внимательном разборе данного уравнения видно, что можно разделить переменные, что и делаем, после интегрируем:

В данном случае константу C считается не обязательным определять под логарифм.

Ответ

Задание

Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(1)=e. Выполнить проверку.

Решение

Как и в предыдущих примерах первым шагом будет нахождение общего решения. Для этого начинаем разделять переменные:

Общий интеграл получен, осталось упростить его. Упаковываем логарифмы и избавляемся от них:

можно выразить функцию в явном виде.

Осталось найти частное решение, удовлетворяющее начальному условию y(1)=e.

Подставляем найденное значение константы C=1 в общее решение.

Ответ

Проверка

Необходимо проверить, выполняется ли начальное условие:

Из равенства выше видно, что начальное условие y(1)=e выполнено.

Далее проводим следующую проверку: удовлетворяет ли вообще частное решение

дифференциальному уравнению. Для этого находим производную:

Подставим полученное частное решение

и найденную производную в исходное уравнение

Получено верное равенство, значит, решение найдено правильно.

Задание

Найти общий интеграл уравнения

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Ответ

Задание

Найти частное решение ДУ.

Решение

Данное ДУ допускает разделение переменных. Разделяем переменные:

Найдем частное решение (частный интеграл), соответствующий заданному начальному условию

Подставляем в общее решение

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

(здесь дробь раскладывается методом неопределенных коэффициентов)

Ответ

Задание

Решить дифференциальное уравнение

Решение

Данное уравнение допускает разделение переменных.

Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:


источники:

http://univerlib.com/mathematical_analysis/functions_several_variables/variable_change/

http://nauchniestati.ru/spravka/primery-resheniya-differenczialnyh-uravnenij-s-otvetami/