Как составить уравнение директрисы эллипса

Урок 11

Директрисы эллиПса и гиПерболы.

Директрисы эллиПса и гиПерболы.

оПреДеление. Две Прямые, ПерПенДикулярные большой оси эллиПса и расПоложенные симметрично относительно центра на расстоянии а/e от него, называются Директрисами эллиПса (гДе а — большая Полуось эллиПса, e — эксцентриситет)

оПреДеление. Две Прямые, ПерПенДикулярные Действительной оси гиПерболы и расПоложенные симметрично относительно центра на расстоянии а/e от него, называются Директрисами гиПерболы (гДе а — Действительная Полуось, e — эксцентриситет)

уравнения Директрис эллиПса и гиПерболы имеют виД: х= ± а/e.

с Помощью Понятия Директрисы и эксцентриситета можно сформулировать общее свойство, Присущее эллиПсу и гиПерболе.

теорема. если r — расстояние от Произвольной точки м эллиПса (гиПерболы) До какого-нибуДь фокуса, d — расстояние от этой же точки До соответствующей этому фокусу Директрисы, то отношение r/d есть Постоянная величина, равная эксцентриситету эллиПса (гиПерболы).

Данное свойство можно Положить в основу общего оПреДеления этих линий: множество точек, Для которых отношение расстояний До фокуса и До соответствующей Директрисы является величиной Постоянной, равной e, есть эллиПс, если e 1.

возникает воПрос, что ПреДставляет собой множество точек, При условии e=1. оказывается, это новая линия второго ПоряДка, называемого Параболой.

оПреДеление. Параболой называется множество всех точек Плоскости, кажДая из которых нахоДится на оДинаковом расстоянии от Данной точки, называемой фокусом, и от Данной Прямой, называемой Директрисой и не ПрохоДящей через фокус.

Пусть м(х,у) — Произвольная точка Параболы. обозначим через r расстояние от точки м До фокуса f, через d — расстояние от точки м До Директрисы, а через P — расстояние от фокуса До Директрисы.

величину P называют Параметром Параболы. точка м лежит на Параболе, если r=P.

уравнение Параболы: у 2 =2Pх (каноническое уравнение).

исслеДуем форму Параболы По ее каноническому уравнению (Для не отрицательных значений у):

если х у 2 =2Pху 2 =-2Pхх 2 =2Pух 2 =-2Pу

Пример. Дано уравнение Параболы у 2 =6х. составьте уравнение ее Директрисы и найти коорДинаты фокуса.

решение. сравнивая Данное уравнение с каноническим уравнением Параболы, Получим, что 2р=6, откуДа р=3. так как фокус Параболы имеет коорДинаты (р/2;0), а Директриса — уравнение х=-р/2, то Для Данной Параболы Получаем: коорДинаты фокуса (1,5; 0) и уравнение Директрисы х=-1,5.

уПражнения .

  1. составьте уравнение Параболы с вершиной в начале коорДинат и уравнение Директрисы Параболы, если известно, что осью симметрии является ось ох и что точка Пересечения Прямых у=х и у=2-х лежит на Параболе. (ответ: у 2 =х и х=-0,25)
  2. Даны точки а(-1;0) и в(2;0). точка м(х;у) Движется так, что в треугольнике амв угол авм остается вДвое больше угла мав. оПреДелить траекторию точки м. (ответ: гиПербола)
  3. Доказать, что если оси Двух Парабол взаимно ПерПенДикулярны и Параболы Пересекаются в четырех точках, то эти точки Пересечения лежат на оДной окружности.

Автор: Вяликова Мария Владимировна — учитель математики и информатики высшей квалификационной категории МАОУ Пролетарская СОШ Новгородского района Новгородской области

Кривые второго порядка. Эллипс: формулы и задачи

Понятие о кривых второго порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

,

где A, B, C, D, E, F — числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

,

где a и b (a > b) — длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a, О) и (- a, О), а ось ординат — в точках (b, О) и (- b, О). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат — малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность — частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a/b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия — эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось — это a = 5 , меньшая полуось — это b = 4 . Получаем каноническое уравнение эллипса:

.

Точки и , обозначенные зелёным на большей оси, где

,

называются фокусами.

называется эксцентриситетом эллипса.

Отношение b/a характеризует «сплюснутость» эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

— если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

— если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат — каноническое уравнение эллипса:

.

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c, нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c, определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Решить задачи на эллипс самостоятельно, а затем посмотреть решение

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если — произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами эллипса (на чертеже — красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и — расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

Решение. Смотрим в уравнение директрис, видим, что в нём можем заменить символ эксцентриситета формулой эксцентриситета как отношение первой координаты фокуса к длине большей полуоси. Так сможем вычислить квадрат длины большей полуоси. Получаем:

.

Теперь можем получить и квадрат длины меньшей полуоси:

Уравнение эллипса готово:

Пример 9. Проверить, находится ли точка на эллипсе . Если находится, найти расстояние от этой точки до фокусов эллипса.

Решение. Подставляем координаты точки x и y в уравнение эллипса, на выходе должно либо получиться равенство левой части уравнения единице (точка находится на эллипсе), либо не получиться это равенство (точка не находится на эллипсе). Получаем:

.

Получили единицу, следовательно, точка находится на эллипсе.

Приступаем к нахождению расстояния. Для этого нужно вычислить: число c, определяющее первые координаты фокусов, число e — эксцентриситет и числа «эр» с подстрочными индексами 1 и 2 — искомые расстояния. Получаем:

Проведём проверку: сумма расстояний от любой точки на эллипсе до фокусов должна быть равна 2a.

,

так как из исходного уравнения эллипса .

Одним из самых замечательных свойств эллипса является его оптическое свойство, состоящее в том, что прямые, соединяющие точку эллипса с его фокусами, пересекают касательную к эллипсу под разными углами. Это значит, что луч, пущенный из одного фокуса, после отраэения попадёт в другой. Это свойство лежит в основе аккустического эффекта, наблюдаемого в некоторых пещерах и искусственных сооружениях, своды которых имеют эллиптическую форму: если находиться в одном из фокусов, то речь человека, стоящего в другом фокусе, слышна так хорошо, как будто он находится рядом, хотя на самом деле расстояние велико.

Эллипс

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
\frac>>+\frac>>=1\label
$$
при условии \(a \geq b > 0\).

Из уравнения \eqref следует, что для всех точек эллипса \(|x| \leq a\) и \(|y| \leq b\). Значит, эллипс лежит в прямоугольнике со сторонами \(2a\) и \(2b\).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты \((a, 0)\), \((-a, 0)\), \((0, b)\) и \((0, -b)\), называются вершинами эллипса. Числа \(a\) и \(b\) называются соответственно большой и малой полуосями эллипса.

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты \((x, y)\) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты \((-x, y)\), \((x, -y)\) и \((-x, -y)\) точек \(M_<1>\), \(M_<2>\) и \(M_<3>\) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса \(a\) с центром в центре эллипса: \(x^<2>+y^<2>=a^<2>\). При каждом \(x\) таком, что \(|x| Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении \(b/a\).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Фокусами называются точки \(F_<1>\) и \(F_<2>\) с координатами \((c, 0)\) и \((-c, 0)\) в канонической системе координат (рис. 8.3).

Рис. 8.3. Фокусы эллипса.

Для окружности \(c=0\), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Отметим, что \(\varepsilon Утверждение 2.

Расстояние от произвольной точки \(M(x, y)\), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы \(x\):
$$
r_<1>=|F_<1>M|=a-\varepsilon x,\ r_<2>=|F_<2>M|=a+\varepsilon x.\label
$$

Очевидно, что \(r_<1>^<2>=(x-c)^<2>+y^<2>\). Подставим сюда выражение для \(y^<2>\), найденное из уравнения эллипса. Мы получим
$$
r_<1>^<2>=x^<2>-2cx+c^<2>+b^<2>-\fracx^<2>>>.\nonumber
$$

Учитывая равенство \eqref, это можно преобразовать к виду
$$
r_<1>^<2>=a^<2>-2cx+\fracx^<2>>>=(a-\varepsilon x)^<2>.\nonumber
$$
Так как \(x \leq a\) и \(\varepsilon Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса \(2a\).

Необходимость. Если мы сложим равенства \eqref почленно, то увидим, что
$$
r_<1>+r_<2>=2a.\label
$$
Достаточность. Пусть для точки \(M(x, y)\) выполнено условие \eqref, то есть
$$
\sqrt<(x-c)^<2>+y^<2>>=2a-\sqrt<(x+c)^<2>+y^<2>>.\nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^<2>=a\sqrt<(x+c)^<2>+y^<2>>.\label
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение \eqref. Мы придем к \(b^<2>x^<2>+a^<2>y^<2>=a^<2>b^<2>\), равносильному уравнению эллипса \eqref.

Рис. 8.4. Фокусы и директрисы эллипса.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса \(\varepsilon\).

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть \(M_<0>(x_<0>, y_<0>)\) — точка на эллипсе и \(y_ <0>\neq 0\). Через \(M_<0>\) проходит график некоторой функции \(y=f(x)\), который целиком лежит на эллипсе. (Для \(y_ <0>> 0\) это график \(f_<1>(x)=b\sqrt<1-x^<2>/a^<2>>\), для \(y_ <0>Утверждение 5.

Касательная к эллипсу в точке \(M_<0>(x_<0>, y_<0>)\) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Рис. 8.5.


источники:

http://function-x.ru/curves_ellipse.html

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/ellipse/