Как составить уравнение равновесия конструкции

Равновесие составной конструкции

Рассмотрим равновесие системы сил, которые приложены к системе тел, соединенных между собой с помощью шарниров, гибких звеньев (тросов), или таких, которые свободно опираются друг на друга. Силы, действующие на такую систему тел, можно разделить на внешние и внутренние.

Внутренние – силы взаимодействия между телами конструкции.

Внешние – силы, с которыми взаимодействуют тела данной конструкции с другими телами.

Пример. Конструкция состоит из двух твердых тел АС и СДВ, связанных между собой шарниром С (рис. 5.4 а). На конструкцию действует сила , пара сил с моментом М и равномерно распределенная нагрузка интенсивностью q. Для этой конструкции шарнир С – внутренняя связь, а связи, которые присоединяют конструкцию к земле – внешние (шарнир подвижный в точке А и жесткое защемление в точке В).

Определить реакции связей в точках А и В и усилие в шарнире С.

аб
вг
Рисунок 5.4

Если объектом изучения взять всю составную конструкцию как абсолютно твердое тело, воспользовавшись аксиомой затвердения (Дополнение А.2) – имеем схему сил, изображенную на рис. 5.4 б. Кроме заданных внешних силовых факторов: силы , момента М, силы , изображаем реакцию подвижного шарнира А- , направленную вверх (табл. 1.1, п. 4), реакцию жесткого защемления неизвестного направления разложим на две составляющие и добавим момент пары силы МВ (табл.1.1, п. 5). Таким образом, имеем четыре неизвестных. На конструкцию действует произвольная плоская система сил. На первый взгляд может показаться, что задача статически неопределенная, потому что уравнений равновесия – три; условие (5.10) не выполнено (4>3).

Но из-за того, что конструкция в шарнире С собрана из двух твердых тел АС и СДВ, за объекты изучения можно взять каждую из частей АС и СДВ. Тогда внутреннюю силу реакции шарнира С мы «переведем» в класс внешних сил. При этом воспользуемся аксиомой действия и противодействия (Дополнение А.2) (III-й закон Ньютона). На рисунках 5.4 в и 5.4 г показаны схемы сил, которые действуют на тела АС и СДВ. Это – произвольные плоские системы сил.

Дальше, для схем сил, изображенных на рисунках 5.4 в и 5.4 г, составляем по три уравнения равновесия. Начать лучше из уравнений для схемы 5.4 в, потому что три неизвестные легко определить из трех уравнений равновесия (5.5):

Потом, учитывая, что алгебраические значения равняются алгебраическим значениям , соответственно, составляем уравнения равновесия для схемы сил, которая действует на тело СДВ. Теперь имеем три новых неизвестных . Удачными для их определения будут уравнения равновесия (5.5)

Таким образом, в случае, когда конструкция составлена из нескольких, например n тел, статическую определенность задачи, вместо формулы (5.10) определяем формуле

где S – общее количество неизвестных;

lі – количество уравнений равновесия для і – го тела;

n – количество тел, из которых состоит конструкция.

Вывод: задачи на равновесие системы тел можно решать двумя методами.

Первый метод. Сначала рассматривается равновесие конструкции составленной из системы тел, считая, что внутренние связи затвердели (аксиома затвердения, Дополнение А.2). Позже рассматривается равновесие n –1 тел, из которых составлена конструкция. Составляется необходимое для определения неизвестных сил количество уравнений равновесия, руководствуясь условием статической определенности задачи (формула (5.11)).

Второй метод. Применяя метод разбиения конструкции на части, рассматривается равновесие каждого тела, из которых составлена конструкция. Для каждого тела составляется соответствующее количество уравнений равновесия. Этот метод применен в вышеприведенном примере.

Каким методом пользоваться? Оба методы – равноправные. Можно порекомендовать пользоваться вторым методом, если нужно определить усилия в соединительных элементах. Если спрашивают реакции только внешних связей – пользуются первым методом.

План решения задач вторым методом.

1. На рисунке изображают все заданные силы, которые действует на составную конструкцию. Согласно аксиоме связей (п. 1.4), «отбрасывают» внешние связи, заменяя их соответствующими реакциями связей (табл. 1.1).

2. Выяснив, что количество неизвестных больше количества уравнений равновесия, (которые можно составить для изображенной на рисунке системы сил) конструкцию разбивают на части, из которых она составлена. На следующих рисунках изображают схемы сил, действующие на отдельные свободные тела, заменяя внутренние и внешние связи соответствующими реакциями (табл. 1.1).

3. Проверяем, удовлетворяет ли общее количество неизвестных S и количество уравнений равновесия l1 + l2 + … + ln условию, которое отображает формула (5.11). Если да – задача статически определенная. Приступаем к её решению.

4. Составляем уравнения равновесия для каждого тела, начиная (если это возможно) с тела, для которого количество неизвестных не превышает количества уравнений равновесия.

5. Проверку рационально сделать для всей составной конструкции, считая, что гибкие связи и шарниры затвердели, то есть воспользоваться схемой сил, которую изобразили в первом пункте Плана.

iSopromat.ru

Уравнения равновесия (статики) характеризуют неподвижность заданной системы нагруженной комплексом внешних усилий.

При решении задач теоретической механики и сопротивления материалов (например, при определении опорных реакций или внутренних силовых факторов) исходя из условия неподвижности системы или ее частей, записываются уравнения равенства нулю сумм проекций всех сил на оси выбранной системы координат

что следует из условия отсутствия перемещения системы вдоль этих осей, и сумм моментов относительно произвольных точек системы

из условия отсутствия ее вращения относительно указанных осей.

Надо отметить что в случае действия плоской системы сил можно получить только три уравнения статики, а линейная схема нагружения позволяет записать лишь одно уравнение.

Пример составления уравнений равновесия

В качестве примера, рассмотрим общий случай пространственного нагружения, где комплекс усилий, включающий сосредоточенные силы F1-F6, равномерно распределенную нагрузку q, и момент m расположенный в плоскости перпендикулярной длинному стержню, удерживает L-образную систему в равновесии.

Обозначим характерные точки системы буквами A, B, C и D, зададим положение трехмерной системы координат xyz и запишем уравнения равновесия.

Суммы проекций сил

Сумма проекций всех сил на ось x (с учетом правила знаков для сил):

здесь при записи силы от распределенной нагрузки ее интенсивность q умножается на ее длину AB.

Суммы моментов

Суммы моментов всех нагрузок, например, относительно точки B (с учетом правила знаков для моментов):

  • в плоскости xOy:
  • в плоскости xOz:
  • в плоскости yOz:

Из полученных шести уравнений можно определить не более шести неизвестных усилий.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Определение реакций опор составной конструкции – решение задачи

Как определить реакции опор составной конструкции

Для определения реакций опор составной конструкции, мы выполняем следующие шаги.

  • Мысленно разбиваем конструкцию на отдельные элементы, каждый из которых является твердым телом или материальной точкой.
  • Вместо связей в опорах и точках соединений составных элементов прикладываем силы реакций. Вид сил реакций зависит от крепления опоры или точки соединения тел.
  • Для каждого тела, входящего в конструкцию, составляем уравнения равновесия.
  • В результате получаем систему уравнений. Если задача является статически определимой, то эта система имеет единственное решение. Решаем ее, и получаем искомые значения реакций опор и сил реакций, действующих между отдельными элементами конструкции.
  • Если задача не является статически определимой, то система уравнений имеет бесконечно много решений. Выбрать единственное решение, методами статики, нельзя. Это можно сделать методами сопротивления материалов.

При составлении уравнений стоит заметить, что иногда целесообразно составлять уравнения равновесия для всей конструкции в целом, или к группе ее элементов, рассматривая их как единое целое.

Силы, возникающие в точках соприкосновения частей конструкции, связаны между собой законом равенства действия и противодействия:
Сила, с которой первое тело действует на второе, равна по абсолютной величине и противоположна по направлению силе, с которой второе тело действует на первое.

Методы определения реакций опор твердых тел рассмотрены на странице
«Определение реакций опор твердого тела».

Далее рассмотрен пример решения задачи на определение реакций опор составной конструкции.

Пример решения задачи на определение реакций опор составной конструкции

Для составной конструкции, изображенной на рисунке, определить реакции опор в шарнирах A и B , а также реакции в скользящей заделке C . Расстояния указаны в метрах.

Дано:
P 1 = 5 kН ; P 2 = 7 kН ; M = 22 kН·м ; q = 2 kН/м ; α = 60° .

Решение задачи

Равновесие стержня CB

Мысленно разъединим конструкцию. Рассмотрим равновесие стержня CB . Проводим систему координат Axyz с началом в точке A . Ось Az перпендикулярна плоскости рисунка и направлена на нас.

Соединение в точке C является скользящей заделкой. Заменим это соединение силами реакций. Разложим их на две составляющие: на силу , параллельную оси y ; и на момент (пару сил) MC . Их направления выбираем произвольно. Если мы не угадаем с направлением, то значение соответствующей реакции будет иметь отрицательное значение.

Шарнирную опору в точке B заменим силами реакций и , параллельными осям координат.

Рассмотрим геометрию системы. Из прямоугольного треугольника OBC имеем:
м ;
м ;
;
.
Здесь β – угол между стержнем CB и вертикалью CO . Поскольку , то угол между направлением силы и горизонталью также равен β .

Составляем уравнения равновесия. Сумма проекций сил на ось x равна нулю.
;
;
;
(П1) .

Сумма проекций сил на ось y равна нулю.
;
;
;
(П2) .

Составляем уравнение для моментов. Возьмем ось Bz′ , проходящую через точку B перпендикулярно плоскости рисунка. Сумма моментов сил относительно этой оси равна нулю:
;
(П3.1) .

Вычисляем моменты сил. Ось Bz′ направлена на нас. По правилу правого винта, положительным направлением моментов сил является направление против часовой стрелки.
Силы реакций пересекают ось Bz′ . Поэтому их моменты равны нулю.
Плечом силы является отрезок OB . Тогда
.
Поскольку , то отрезок DB является плечом силы . Момент этой силы:
.

Равновесие конструкции в целом

Рассмотрим равновесие всей конструкции в целом. Шарнирную опору в точке A заменим силами реакций и , параллельными осям координат.

Заменим равномерно распределенную нагрузку q равнодействующей . Абсолютное значение равнодействующей равно площади эпюры:
kН .
Точка приложения равнодействующей находится в центре тяжести эпюры – в точке L , посередине отрезка KA :
|KL| = |LA| = 2 м .

Силы и разложим на составляющие вдоль осей координат:
; ;
; ;
; .

Составляем уравнения равновесия. Сумма проекций сил, действующих на всю конструкцию, на ось x равна нулю.
;
;
;
(П4) .

Сумма проекций сил на ось y равна нулю.
;
;
;
(П5) .

Сумма моментов сил относительно оси z , проходящей через точку A перпендикулярно плоскости рисунка, равна нулю:
;
(П6.1)
.

Вычисляем моменты сил. Силы реакций и пересекают ось Az . Поэтому их моменты равны нулю.
Момент от некоторой силы относительно оси Az равен произведению плеча силы на абсолютное значение этой силы, взятое с соответствующим знаком. Если сила направлена в положительном направлении (против часовой стрелки), то знак момента положительный. В противном случае – отрицательный. Чтобы найти плечо, через вектор силы проводим прямую. Длина перпендикуляра, опущенного из точки A на эту прямую равна плечу силы относительно оси Az .

В результате уравнение (П6.1) принимает вид:

;
(П6)
.

Решение уравнений равновесия

Итак, мы получили следующую систему линейных уравнений:
(П1) ;
(П2) ;
(П3) ;
(П4) ;
(П5) ;
(П6)
.
В ней шесть уравнений и шесть неизвестных. Решаем систему.

Из уравнения (П1): kН .
Из уравнения (П4) имеем:

kН .
Из уравнения (П6) находим:

kН .
Далее из уравнений (П2), (П3) и (П5) последовательно находим:
kН .
kН .
kН .

Решение системы уравнений оказалось простым во многом благодаря тому, что мы подходящим образом выбрали оси, относительно которых вычисляли моменты. А также за счет того, что мы удачно выбрали части конструкции, для которых составляли уравнения (правую часть и всю конструкцию в целом). Можно составить уравнения равновесия и другими способами. Например, можно составить уравнения равновесия для левой и правой частей конструкции и выбрать другие оси для вычисления моментов. Если бы мы сделали это неудачно, то нам пришлось бы решать систему из шести линейных уравнений с шестью неизвестными другим способом, например, методом Крамера. Количество вычислений было бы больше, но в результате мы все равно получили бы одни и те же значения сил реакций.

Проверка правильности решения

Сделаем проверку правильности решения задачи. Для этого рассмотрим равновесие левой части конструкции.

По закону равенства действия и противодействия, в скользящей заделке C , на раму действуют сила и момент MC . Их направления противоположны силе и моменту, действующих в точке C на правую часть конструкции, а абсолютные значения равны.

Через точку V проведем ось Vz′′ , перпендикулярно плоскости рисунка. Если мы определили значения реакций правильно, то сумма моментов сил относительно этой оси должна равняться нулю:

.

kН ; kН ; kН ; kН ; kН ; kН·м .

Отрицательные значения реакций и указывают на то, что они направлены в сторону, противоположную той, которая изображена на рисунке.

Использованная литература:
Сборник заданий для курсовых работ по теоретической механике, под редакцией проф. А.А. Яблонского, Москва «Интеграл-пресс», 2006.

Автор: Олег Одинцов . Опубликовано: 08-11-2017 Изменено: 22-12-2021


источники:

http://isopromat.ru/sopromat/otvet/uravnenia-statiki

http://1cov-edu.ru/mehanika/statika/opredelenie-reaktsij-opor-sostavnoj-konstruktsii/