Как составить уравнение реакций связей

Теормех реакции опор связи

Содержание:

Связи и их реакции

По определению, тело, которое может совершать из данного положения любые перемещения в пространство, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним, тела, называется несвободным.. Все то, что ограничивает перемещения данного тела в пространстве, называют связью. В дальнейшем будем рассматривать связи, реализуемые какими-нибудь телами, и называть связями сами эти тела.

Примерами несвободных тел являются груз, лежащий на столе, дверь, подвешенная на петлях, и т. п. Связями в этих случаях будут: для груза — плоскость стола, не дающая грузу перемещаться по вертикали вниз; для двери — петли, не дающие двери отойти от косяка.

Тело, стремясь под действием приложенных сил осуществить перемещение, которому препятствует связь, будет действовать на нее с некоторой силой, называемой силой давления на связь. Одновременно по закону о равенстве действия и противодействия связь будет действовать на тело с такой же по модулю, но противоположно направленной силой. Сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Значение реакции связи зависит от других действующих сил и наперед неизвестно (если никакие другие силы на тело не действуют, реакции равны нулю); для ее определения надо решить соответствующую задачу механики. Направлена реакция связи в сторону, противоположную той, куда связь не даст перемещаться телу. Когда связь может препятствовать перемещениям тела по нескольким направлениям, направление реакции такой связи тоже наперед неиз—вестно и должно определяться в результате решения рассматриваемой задачи.

Правильное определение направлений реакций связей играет при решении задач механики очень важную роль. Рассмотрим поэтому подробнее, как направлены реакции некоторых основных видов связей.

1. Гладкая плоскость (поверхность) или спора

Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая

поверхность не дает телу перемещаться только по направлению общего перпендикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 8, а) *. Поэтому реакция гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкасающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 8, б), то реакция направлена по нормали к другой поверхности.

2. Нить

Связь, осуществленная в виде гибкой нерастяжимой нити (рис. 9), не дает телу удаляться от точки подвеса нити по направлению Поэтому реакция натянутой нити направлена вдоль нити к точке ее подвеса.

3. Цилиндрический шарнир

Цилиндрический шарнир (или просто шарнир) осуществляет такое соединение двух тел, при котором одно тело может вращаться по отношению к другому вокруг общей оси, называемой осью шарнира (например, как две половины ножниц). Если тело прикреплено с помощью такого шарнира к неподвижной опоре (рис. 10), то точка тела не может при этом переместиться ни по какому направлению, перпендикулярному оси шарнира. Следовательно, акция цилиндрического шарнира может иметь любое направление в плоскости перпендикулярной оси шарнира, т. е. в плоскости Для силы в этом случае наперед неизвестны ни ее модуль ни направление (угол ).

Возможно вам будут полезны данные страницы:

4. Сферический шарнир и подпятник

Тела, соединенные сферическим шарниром, могут как угодно поворачиваться одно относительно другого вокруг центра шарнира. Примером служит прикрепление фотоаппарата к штативу с помощью шаровой пяты. Если тело прикреплено с помощью такого шарнира к неподвижной опоре (рис. 11, а), то точка тела, совпадающая с центром шарнира, не может при этом совершить никакого перемещения в пространстве. Следовательно, реакция сферического шарнира может иметь любое направление в пространстве. Для нее наперед неизвестны ни ее модуль ни углы с осями

Произвольное направление в пространстве может иметь и реакция подпятника (подшипника с упором), изображенного на рис. 11,б.

5. Невесомый стержень. Невесомым называют стержень.

весом которого по сравнению с воспринимаемой им нагрузкой можно пренебречь. Пусть для какого-нибудь находящегося в равновесии тела (конструкции) такой стержень, прикрепленный в точках и шарнирами, является связью (рис. 12, а). Тогда на стержень будут действовать только две силы, приложенные в точках и , при равновесии эти силы должны быть направлены вдоль одной прямой, т. е. вдоль (см. рис. 4, а, в). Но тогда согласно закону о действии и противодействии стержень будет действовать натело с силой, тоже направленной вдоль . Следовательно, реакция невесомого шарнирно прикрепленного прямолинейного стержня направлена вдоль оси стержня.

Если связью является криволинейный невесомый стержень (рис. 12,б), то аналогичные рассуждения приведут к выводу, что его реакция тоже направлена вдоль прямой соединяющей шарниры и (на рис. 12,а направление реакции соответствует случаю, когда стержень сжат, а на рис. 12, б — когда растянут).

При решении задач Рис. 12 реакции связей обычно являются подлежащими определению неизвестными. Нахождение реакций имеет то практическое значение, что определив их, а тем самым определив по закону о действии и противодействии и силы давления на связи, получают исходные данные, необходимые для расчета прочности соответствующих частей конструкции.

Исходные положения статики

При изложении статики можно идти двумя путями:

  • 1) исходить из уравнений, которые получаются в динамике как следствия основных законов механики
  • 2) излагать статику независимо от динамики исходя из некоторых общих законов механики и положений, называемых аксиомами или принципами статики, хотя по существу они являются не независимыми аксиомами, а следствиями тех же основных законов механики.

В учебных курсах, как и в данном, обычно идут вторым путем, так как по ряду причин оказывается необходимым начинать изучение механики со статики, т. е. до того, как будет изложена динамика. Положения (или аксиомы), из которых при этом исходят, можно сформулировать следующим образом.

  • 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю и направлены вдоль одной прямой в противоположные стороны (рис. 2).
  • 2. Действие данной системы сил на абсолютно твердое тело не изменяется, если к ней прибавить или от нее отнять уравновешенную систему сил.

Иными словами это означает, что две системы сил, отличающиеся на уравновешенную систему, эквивалентны друг другу.

Следствие: действие силы на абсолютно твердое тело не изменится, если перенести точку приложения сит вдоль ее линии действия в любую другую точку тела.

В самом деле, пусть на твердое тело действует приложенная в точке сила (рис. 3). Возьмем на линии действия этой силы произвольную точку и приложим в ней две уравновешенные силы и такие, что и От этого действие силы на тело не изменится. Но силы и также образуют уравновешенную систему, которая может быть отброшена *.В результате на тело будет действовать только одна сила равная но приложенная в точке

Например, изображенный на рис. 4, а стержень будет находиться в равновесии, если При переносе точек приложения обеих сил в какую-нибудьточку стержня (рис. 4, б) или при переносе точки приложения силы в точку а силы в точку (рис. 4, б) равновесие не нарушается. Однако внутренние усилия будут в каждом из рассматри-ваемых случаев разными. В первом случае стержень под действием приложенных сил растягивается, во втором случае он не напряжен, а в третьем стержень будет сжиматься.

  • Следовательно, при определении внутренних усилий переносить точку приложения силы вдоль линии действия нельзя.

Еще два исходных положения относятся к общим законам механики.

Закон параллелограмма сил: две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах.

Вектор равный диагонали параллелограмма, построенного на векторах и (рис. 5), называется геометрической суммой векторов и :

Следовательно, закон параллелограмма сил можно еще сформулировать так: две силы, приложенные к телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме этих сил и приложенную в той же точке.

В дальнейшем следует различать понятия суммы сил и их равнодействующей. Поясним это примером. Рассмотрим две силы и (рис. 6), приложенные к телу в точках и Показанная на рис. 6 сила равна геометрической сумме сил и как диагональ соответствующего параллелограмма. Но сила не является равнодействующей этих сил, так как нетрудно понять, что одна сила не может заменить действие сил и на данное тело, где бы она ни была приложена. В дальнейшем будет еще строго доказано (§29, задача 38), что эти две силы не имеют равнодействующей.

Закон равенства действия и противодействия: при всяком действии одного материального тела на другое имеет место такое же численно, но противоположное по направлению противодействие.

Этот закон является одним из основных законов механики. Из него следует, что если тело действует на тело с некоторой силой то одновременно тело действует на тело с такой же по модулю и направленной вдоль той же прямой, но в противоположную сторону силой (рис. 7). Заметим, что силы и как приложенные к разным телам, не образуют уравновешенную систему сил.

Свойство внутренних сил. Согласно данному закону при взаимодействии две любые части тела (или конструкции) действуют друг на друга с равными по модулю и противоположно направленными силами. Так как при изучении условий равновесия тело рассматривается как абсолютно твердое, то все внутренние силы образуют при этом уравновешенную систему сил, которую можно отбросить. Следовательно, при изучении условий равновесия тела (конструкции) необходимо учитывать только внешние силы, действующие на это тело (конструкцию). В дальнейшем, говоря о действующих силах, мы будем подразумевать, если не сделано специальной оговорки, что речь идет только о внешних силах.

  • Еще одним исходным положением является принцип отвердевания: равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сваренными друг с другом. Так как на покоящееся тело до и после отвердевания действует одна и та же система сил, то данный принцип можно еще высказать в такой форме: при равновесии силы, действующие на любое изменяемое (деформируемое) тело или изменяемую конструкцию, удовлетворяют тем же условиям, что и для тела абсолютно твердого; однако для изменяемого тела эти условия, будучи необходимыми, могут не быть достаточными.

Например, для равновесия гибкой нити под действием двух сил, приложенных к ее концам, необходимы те же условия, что и для жесткого стержня (силы должны быть равны по модулю и направлены вдоль нити в разные стороны). Но эти условия не будут достаточными. Для равновесия нити требуется еще, чтобы приложенные силы были растягивающими, т. е. направленными так, как на рис. 4, а.

Принцип отвердевания широко используется в инженерных расчетах. Он позволяет при составлении условий равновесия рассматривать любое изменяемое тело (ремень, трос, цепь и т. п.) или любую изменяемую конструкцию как абсолютно жесткие и применять к ним методы статики твердого тела. Если полученных таким путем уравнений для решения задачи оказывается недостаточно, то дополнительно составляют уравнения, учитывающие или условия равновесия отдельных частей конструкции, или их деформации (задачи, требующие учета деформаций, решаются в курсе сопротивления материалов).

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Услуги по теоретической механике:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

iSopromat.ru

Связями называют тела, ограничивающие свободу перемещения рассматриваемого тела.

Реакции связей — это усилия, с которыми связи действуют на данное тело.

Тела в природе бывают свободными и несвободными. Тела, свобода перемещения которых ничем не ограничена, называются свободными.

Одним из основных положений механики является принцип освобождаемости от связей, согласно которому несвободное тело можно рассматривать как свободное, если отбросить действующие на него связи и заменить их силами – реакциями связей.

Подробнее про связи и реакции связей смотрите в нашем видео:

Очень важно правильно расставить реакции связей, иначе написанные уравнения окажутся неверными. Ниже приведены примеры замены связей их реакциями. На рисунках 1.1–1.8 показаны примеры замены реакциями сил, расположенных в плоскости.


Реакция гладкой поверхности всегда направлена по нормали к этой поверхности (рисунок 1.1). Реакция «невесомого» троса (нити, цепи, стержня) всегда направлена вдоль троса (нити, цепи, стержня) (рисунок 1.2).

Шарнирно-неподвижная опора может изображаться по-разному (рисунок 1.3, а или 1.3, б). Она может быть заменена либо силой R с углом α (рисунок 1.3, в), либо двумя силами, например, XA и YA (рисунок 1.3, г).


Всегда можно перейти от R и α к XA и YA (и наоборот):

Шарнирно-подвижная опора (рисунок 1.4, а) допускает (в данном случае) горизонтальное перемещение и не допускает вертикальное. Реакция направлена по нормали к опорной поверхности (рисунок 1.4, б).

Связи шарнирно-неподвижной опоры в точке A и шарнирно-подвижной опоры в точке B отброшены (рисунок 1.5, б), их действие заменено силами XA, YA и RB.

Соединение стержня и втулки в плоскости (рисунок 1.6) – скользящая заделка. Отбросим втулку – получим действие на стержень силы RD и момента MD.

На рисунке 1.7, а изображена бискользящая заделка. В плоскости данная опора допускает поступательное перемещение стержня как по горизонтали, так и по вертикали, но препятствует повороту (в плоскости). Реакцией такой опоры будет момент MC (рисунок 1.7, б).

Консоль (глухая или жесткая заделка) не допускает никакого перемещения детали. Реакцией такой опоры являются неизвестная по величине и направлению сила RA с углом α (или XA и YA) и момент ΜA (рисунок 1.8).

На рисунках 1.9 – 1.15 показаны примеры замены сил, расположенных в пространстве, их реакциями.

Шарнирно-неподвижная опора, или сферический шарнир (рисунок 1.9, а), заменена системой сил (рисунок 1.9, б) XA, YA и ZA, т.е. силой, неизвестной по величине и направлению.

На рисунке 1.10, а показан вал, закрепленный в опорах: в точке A – подпятник или стакан, в точке B – втулка или подшипник. Действие опор заменено силами XA, YA, ZA и XB, ZB (рисунок 1.10, б).

На рисунках 1.11 и 1.12 приведены примеры замены различных связей их реакциями.

Связи и реакции связей

Связи и реакции связей

Все законы и теоремы статики справедливы для свободного твердого тела.

Все тела делятся на свободные и связанные.

Свободные тела — тела, перемещение которых не ограничено.

Связанные тела — тела, перемещение которых ограничено другими телами.

Тела, ограничивающие перемещение других тел, называют связями.

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей.

Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Всякое связанное тело можно представить свободным, если связи заменить их реакциями (принцип освобождения от связей). Все связи можно разделить на несколько типов.

Связь — гладкая опора (без трения)

Реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре (рис. 1.7).

Гибкая связь (нить, веревка, трос, цепь)

Груз подвешен на двух нитях (рис. 1.8).

Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.

Жесткий стержень

На схемах стержни изображают толстой сплошной линией (рис. 1.9).

Стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня. Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.

Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент наложенными на него связями.

Убираем стержень 1, в этом случае стержень 2 падает вниз. Следовательно, сила от стержня 1 (реакция) направлена вверх. Убираем стержень 2. В этом случае точка опускается вниз, отодвигаясь от стены. Следовательно, реакция стержня 2 направлена к стене.

Шарнирная опора

Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.

Подвижный шарнир

Стержень, закрепленный на шарнире, может поворачиваться вокруг шарнира, а точка крепления может перемещаться вдоль направляющей (площадки) (рис. 1.10).

Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, т. к. не допускается только перемещение поперек опорной поверхности.

Неподвижный шарнир

Точка крепления перемешаться не может. Стержень может свободно поворачиваться вокруг оси шарнира. Реакция такой опоры проходит через ось шарнира, но неизвестна по направлению. Ее принято изображать в виде двух составляющих: горизонтальной и вертикальной (рис. 1.11).

Защемление или «заделка»

Любые перемещения точки крепления невозможны.

Под действием внешних сил в опоре возникают реактивная сила и реактивный момент , препятствующий повороту (рис. 1.12).

Реактивную силу принято представлять в виде двух составляющих вдоль осей координат

Эта теория взята со страницы решения задач по предмету «техническая механика»:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://isopromat.ru/teormeh/obzornyj-kurs/svyazi-i-ih-reakcii

http://lfirmal.com/svyazi-i-reaktsii-svyazej-v-tehnicheskoj-mehanike/