Как составить уравнение серединный перпендикуляр треугольника

Серединный перпендикуляр

Что такое серединный перпендикуляр к отрезку? Что можно сказать о пересечении серединных перпендикуляров к сторонам треугольника? К сторонам многоугольника?

Серединный перпендикуляр к отрезку — это прямая, перпендикулярная данному отрезку и проходящая через его середину.

m — серединный перпендикуляр к отрезку AB, если

точка C — середина отрезка AB,

Чтобы построить серединный перпендикуляр к данному отрезку с помощью угольника, нужно:

1) найти середину отрезка;

2) провести через эту точку прямую, перпендикулярную данному отрезку (для этого угольник прикладываем прямым углом к середине отрезка так, чтобы она сторона угольника проходила через отрезок, а через другую сторону проводим прямую):

Свойства серединного перпендикуляра.

1) Геометрическое место точек, равноудаленных от двух данных точек, есть серединный перпендикуляр к отрезку, соединяющему эти точки.

Например, прямая m — геометрическое место точек, равноудаленных от точек A и B (рисунок 1).

2) Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Эта точка является центром описанной около треугольника окружности.

3) Если около многоугольника можно описать окружность, то центр этой описанной окружности является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Серединный перпендикуляр к отрезку

Определение 1. Серединным перпендикуляром к отрезку называется прямая, которая проходит через середину отрезка и перпендикулярная к нему.

На рисунке 1 прямая \( \small l \) серединный перпендикуляр к отрезку \( \small AB .\)

Теорема о серединном перпендикуляре к отрезку

Теорема 1. 1) Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. 2) Обратно: Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

Доказательство. 1) Пусть точка \( \small O \) середина отрезка \( \small AB \) и пусть прямая \( \small q \) серединный перпендикуляр к отрезку \( \small AB \) (Рис.2). Рассмотрим любую точку \( \small M \) на прямой \( \small q \). Докажем, что \( \small AM=BM. \) Если точка \( \small M \) совпадает с точкой \( \small O \), то равенство \( \small AM=BM \) верно поскольку \( \small AO=BO \) (\( \small O \)-середина отрезка). Пусть \( \small M \) и \( \small O \) различные точки. Тогда прямоугольные треугольники \( \small MOA \) и \( \small MOB \) равны по двум катетам (\( \small AO=OB \), \( \small OM \)− общий). Следовательно \( \small AM=BM. \)

2) Пусть точка \( \small P \) равноудалена от от концов отрезка \( \small AB \) (Рис.3). Тогда выполено равенство \( \small AP=BP \). Докажем, что \( \small P \) лежит на серединном перпендикуляре \( q \). Если точка \( \small P \) принадлежит прямой \( \small AB \), то поскольку она равноудалена от концов отрезка \( \small AB, \) она совпадает с точкой \( \small O \), т.е. лежит на прямой \( q.\) Если же \( \small P \) не лежит на прямой \( \small AB \), то треугольник \( \small ABP \) равнобедренный, поскольку \( \small AP=BP .\) Отрезок \( \small PO \) медиана этого равнобедренного треугольника и, значит, является также высотой этого треугольника. Тогда \( \small PO⊥AB .\) Прямые \( \small PO \) и \( q \) проходят через точку \( \small O \) и перпендикулярны к \( \small AB .\) Следовательно эти прямые совпадают, т.е. точка \( \small P \) принадлежит прямой \( q. \)

Серединный перпендикуляр к отрезку — определение и вычисление с примерами решения

Серединный перпендикуляр к отрезку:

Рассмотрим понятие серединного перпендикуляра к отрезку.

Определение. Серединным перпендикуляром к отрезку называется прямая, перпендикулярная этому отрезку и проходящая через его середину.

Следующая теорема характеризует свойства точек серединного перпендикуляра к отрезку.

Теорема 5 (о серединном перпендикуляре). Каждая точка серединного перпендикуляра к отрезку находится на равном расстоянии от концов этого отрезка. Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

1) Пусть прямая m — серединный перпендикуляр к отрезку АВ, точка О — середина отрезка АВ (рис. 73, а).

Пусть точка F — произвольная точка серединного перпендикуляра. Докажем, что FА = FВ. Если точка F совпадает с точкой О, то это равенство верно, так как точка О — середина отрезка АВ. Пусть точка F не совпадает с точкой О. В этом случае треугольник АОF равен треугольнику ВОF по первому признаку равенства треугольников (АО = ОВ по условию, сторона ОF — общая, 90°). Отсюда следует, что АF = ВF.

2) Пусть точка L равноудалена от концов отрезка АВ, т. е. АL = ВL (рис. 73, б). Докажем, что точка L лежит на прямой m. Если точка L лежит на прямой АВ, то она совпадает с серединой О отрезка АВ, т. е. лежит на прямой m. Если точка В не лежит на прямой АВ, то треугольник АLВ равнобедренный. Отрезок LO — медиана этого треугольника, а следовательно, и высота. Таким образом, АВ, а, значит, прямые и m совпадают. Отсюда вытекает, что точка L лежит на прямой m.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Второй и третий признаки равенства треугольников
  • Параллельные прямые
  • Соотношения между сторонами и углами треугольника
  • Неравенство треугольника — определение и вычисление
  • Первый признак равенства треугольников
  • Перпендикуляр и наклонная в геометрии
  • Медианы, высоты и биссектрисы треугольника
  • Равнобедренный треугольник и его свойства

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://matworld.ru/geometry/seredinnyj-perpendikulyar.php

http://www.evkova.org/seredinnyij-perpendikulyar-k-otrezku