Как составлять уравнение моментов относительно точки

iSopromat.ru

Правила знаков для моментов и проекций сил на оси координат:

Правило знаков проекций сил

То есть, для уравнений сумм проекций сил на оси:
Проекции сил и нагрузок на координатную ось имеющие одинаковое направление принимаются положительными, а проекции усилий противоположного направления – отрицательными.

Например, для такой схемы нагружения:

уравнение суммы сил имеет вид

А так как суммы проекций разнонаправленных сил равны, то данное уравнение можно записать и так:

Здесь F(q) – равнодействующая от распределенной нагрузки, определяемая произведением интенсивности нагрузки на ее длину.

Правило знаков для моментов

Сосредоточенные моменты и моменты сил стремящиеся повернуть систему относительно рассматриваемой точки по ходу часовой стрелки записываются в уравнения с одним знаком, и соответственно моменты, имеющие обратное направление с противоположным знаком.


Например, для суммы моментов относительно точки A

или, что одно и то же

Здесь m(F) – моменты сил F относительно точки A.
M(q) – моменты распределенных нагрузок q относительно рассматриваемой точки.

При составлении уравнений статики для систем находящихся в равновесии (например при определении опорных реакций) правила знаков могут быть упрощены до следующего вида:
Нагрузки направленные в одну сторону принимаются положительными, а соответственно, нагрузки обратного направления записываются со знаком минус.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Момент силы

О чем эта статья:

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или замедляется, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

  • Сила — это физическая векторная величина, является мерой действия тела на другое тело.

Она измеряется в ньютонах — это единица измерения названа в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

Плечо силы

Для начала давайте разберемся, что такое плечо силы — оно нам сегодня очень пригодится.

Представьте человека. Совершенно обычного. Если он совершенно обычный, у него точно будут плечи — без них получится уже какой-то инопланетянин. Если мы прочертим прямую вдоль линии плеча, а потом еще одну — вдоль линии руки — мы получим две пересекающиеся прямые. Угол между такими прямыми будет равен 90 градусов, а значит эти линии перпендикулярны.

Как анатомическое плечо перпендикулярно руке, так и в физике плечо перпендикулярно, только уже линии действия силы.

То есть перпендикуляр, проведенный от точки опоры до линии, вдоль которой действует сила — это плечо силы.

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Рычаг

В каждом дворе есть качели, для которых нужны два качающихся (если в вашем дворе таких нет, посмотрите в соседнем). Большая доска ставится посередине на точку опоры. По сути своей, качели — это рычаг.

Рычаг — простейший механизм, представляющий собой балку, вращающуюся вокруг точки опоры.

Хорошо, теперь давайте найдем плечо этой конструкции. Возьмем правую часть качелей. На качели действует сила тяжести правого качающегося, проведем перпендикуляр от линии действия силы до точки опоры. Получилась, что плечо совпадает с рычагом, разве что рычаг — это вся конструкция, а плечо — половина.

Давайте попробуем опустить качели справа, тогда что получим: рычаг остался тем же самым по длине, но вот сместился на некоторый угол, а вот плечо осталось на том же месте. Если направление действия силы не меняется, как и точка опоры, то перпендикуляр между ними невозможно изменить.

Правило равновесия рычага

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

F1, F2 — силы, действующие на рычаг

Момент силы

При решении задач на различные силы нам обычно хватало просто сил. Сила действует всегда линейно (ну в худшем случае под углом), поэтому очень удобно пользоваться законами Ньютона, приравнивать разные силы. Это работало с материальными точками, но не будет так просто применяться к телам, у которых есть форма и размер.

Вот мы приложили силу к краю палки, но при этом не можем сказать, что на другом ее конце будут то же самое ускорение и та же самая сила. Для этого мы вводим такое понятие, как момент силы.

Момент силы — это произведение силы на плечо. Для определения физического смысла можно сказать, что момент — это вращательное действие.

Момент силы

M = Fl

M — момент силы [Н*м]
F — сила [Н]
l — плечо [м]

Для примера представьте, что вы забыли, как открывать двери. Стоите перед дверью и раздумываете, как легче это сделать.

Для начала приложим силу к краю двери — туда, где самый длинный рычаг. Открылась!

А что если толкнуть дверь ближе к креплению — там, где плечо намного короче? Для этого придется приложить силу большего значения.

Вывод: чтобы повернуть дверь, нужен крутящий момент определенного значения. Чем больше плечо силы, тем меньше значение силы, которую нужно приложить — и наоборот. Поэтому нам легче толкать дверь там, где плечо силы больше.

Похожая история с гаечным ключом. Чтобы закрутить гайку, нужно взяться за ручку подальше от гайки. За счет увеличения плеча мы уменьшаем значение силы, которую нужно приложить.

Расчет момента силы

Сейчас рассмотрим несколько вариантов того, как момент может рассчитываться. По идее просто нужно умножить силу на плечо, но поскольку мы имеем дело с векторами, все не так просто.

Если сила расположена перпендикулярно оси стержня, мы просто умножаем модуль силы на плечо.

Расстояние между точками A и B — 3 метра.

Момент силы относительно точки A:

Если сила расположена под углом к оси стержня, умножаем проекцию силы на плечо.

Обратите внимание, что такие задания могут встретиться только у учеников не раньше 9 класса!

Момент силы относительно точки B:

Если известно самое короткое расстояние от точки до линии действия силы, момент рассчитывается как произведение силы на это расстояние (плечо).

Момент силы относительно точки B:

Правило моментов

Вернемся к нашим баранам качелям. Силы, с которыми мы действуем на разные стороны этих качелей могут быть разными, но вот моменты должны быть одинаковыми.

Правило моментов говорит о том, что если рычаг не вращается, то сумма моментов сил, поворачивающих рычаг против часовой стрелки, равна сумме моментов сил, поворачивающих рычаг по часовой стрелке.

Это условие выполняется относительно любой точки.

Правило моментов

M1 + M2 +. + Mn — сумма моментов сил, поворачивающих рычаг по часовой стрелке [Н*м]

M’1 + M’2 +. + M’n — сумма моментов сил, поворачивающих рычаг против часовой стрелке [Н*м]

Давайте рассмотрим этот закон на примере задач.

Задача 1

К левому концу невесомого стержня прикреплен груз массой 3 кг.

Стержень расположили на опоре, отстоящей от его левого конца на 0,2 длины стержня. Чему равна масса груза, который надо подвесить к правому концу стержня, чтобы он находился в равновесии?

Решение:

Одним из условий равновесия стержня является то, что полный момент всех внешних сил относительно любой точки равен нулю. Рассмотрим моменты сил относительно точки опоры. Момент, создаваемый левым грузом равен он вращает стержень против часовой стрелки. Момент, создаваемый правым грузом: — он вращает по часовой.

Приравнивая моменты, получаем, что для равновесия к правому концу стержня необходимо подвесить груз массой

M = m : 4 = 3 : 4 = 0,75 кг

Ответ: для равновесия к правому концу стержня необходимо подвесить груз массой 0,75 кг

Задача 2

Путешественник несёт мешок с вещами на лёгкой палке. Чтобы удержать в равновесии груз весом 80 Н, он прикладывает к концу B палки вертикальную силу 30 Н. OB = 80 см. Чему равно OA?

Решение:

По правилу рычага:

где FA и FB — силы, приложенные соответственно к точкам A и B. Выразим длину OA:

Ответ: расстояние ОА равно 30 см

Задача 3

Тело массой 0,2 кг подвешено к правому плечу невесомого рычага (см. рисунок). Груз какой массы надо подвесить ко второму делению левого плеча рычага для достижения равновесия?

Решение:

По правилу рычага

Ответ: Масса груза равна 0,3 кг

Задача 4 — a.k.a самая сложная задачка

Под действием силы тяжести mg груза и силы F рычаг, представленный на рисунке, находится в равновесии. Вектор силы F перпендикулярен рычагу, груз на плоскость не давит. Расстояния между точками приложения сил и точкой опоры, а также проекции этих расстояний на вертикальную и горизонтальную оси указаны на рисунке.

Если модуль силы F равен 120 Н, то каков модуль силы тяжести, действующей на груз?

Решение:

Одним из условий равновесия рычага является то, что полный момент всех внешних сил относительно любой точки равен нулю. Рассмотрим моменты сил относительно опоры рычага. Момент, создаваемый силой F, равен F*5 м и он вращает рычаг по часовой стрелке. Момент, создаваемый грузом относительно этой точки — mg*0,8 м, он вращает против часовой. Уточним, что 0,8 м — это расстояние от центра тяжести груза до опоры, т. е. перпендикуляр до оси вращения. Приравнивая моменты, получаем выражение для модуля силы тяжести

Ответ: модуль силы тяжести, действующей на груз равен 750 Н

Моменты в теоретической механике

Вы будете перенаправлены на Автор24

Теоретическая механика представляет раздел физики, в котором изложены основные законы механических взаимодействий и движений материальных тел.

Понятие момента силы в теоретической механике

В теоретической механике говорится о таком понятии, как момент силы. Он представляет собой величину, характеризующую вращательную способность силы.

Парой сил считается система двух параллельных, противоположно направленных и равнозначных по модулю сил: $\vec$, $\vec$. Тело, под воздействием пары сил, будет совершать вращательные движения.

Системой сил является комплекс сил, оказывающих непосредственное воздействие на механическую систему. Плоскую систему при этом представляют силы, чьи линии действия лежат в одной плоскости. Пространственную систему – силы, у которых линии действия не лежат в одинаковой плоскости.

Систему сходящихся сил представляют силы, чьи линии действия будут пересекаться в одной точке. В произвольной системе линии действия сил не будут пересекаться в одной точке.

Равновесное состояние характеризует такое положение, тело при котором в момент действия сил или сохраняет неподвижность, или движется равномерным и прямолинейным образом.

Уравновешенной системой сил считается такая система, которая, прилагаясь к свободному твердому телу, сохраняет неизменность его механического состояния (то есть не выводит из равновесия). Равнодействующей силой будет та сила, чье воздействие на тело эквивалентно действиям системы сил.

Проекцию силы на ось представляет заключенный между перпендикулярами отрезок. При этом они проведены из начала и конца вектора силы к данной оси. Проекция положительная при совпадении направленности отрезка и положительного направления оси. Проекцию силы на плоскость представляет вектор на плоскости между перпендикулярами, которые проведены из начала и конца вектора силы к такой плоскости.

Готовые работы на аналогичную тему

Момент силы относительно оси

Моментом силы относительно оси будет считаться момент проекции такой силы на перпендикулярную оси плоскость в отношении точки их пересечения.

Момент окажется положительным при условии, что поворот, совершаемый силой, осуществляется против часовой стрелки, и отрицательным – если против, записывается это формулой:

$M_z (\vec = M_0 (\vec) = hF_xy$

Для нахождения момента силы относительно оси нужно:

  • провести перпендикулярно оси $z$ плоскость и спроецировать на нее силу $F$;
  • спроецировать силу $F$ на вышеуказанную плоскость с последующим вычислением величины проекции $F_xy$;
  • провести $h$ (плечо) из точки, где пересекается ось с плоскостью, на линию действия проекции $F_xy$ с последующим определением его длины;
  • вычислить произведение этого плеча, а также — проекции силы с соответствующим знаком.

Нулевое значение момент силы относительно оси обретает в том случае, когда $F_xy=0$ (при параллельности силы $F$ оси). Второе условие заключается в том, что линия действия силы будет пересекать ось, т.е. $h=0$.

Равнодействующую $R$ двух сходящихся сил находят по аксиоме параллелограмма сил. Геометрическую сумму любого числа сходящихся сил вычисляют посредством последовательного суммирования двух сил (способом векторного многоугольника).

Таким образом, систему сходящихся сил $\vec$ приводят к одной равнодействующей силе $\vec$

Аналитически равнодействующую силу определяют ее проекцией на оси координат:

Исходя из теоремы, проекция равнодействующей на ось вычисляется формулой:

С учетом этого, равнодействующую определяет выражение:

Действие системы для сходящихся сил будет эквивалентным действию одной равнодействующей силы. Условием равновесия тела считается нулевое значение равнодействующей, т.е. $\vec=0$

Из формулы $R=\sqrt<(\sum)^2+(\sum)^2+(\sum)^2>$ следует, что главным и необходимым условием равновесного состояния пространственной системы сходящихся сил будет нулевое значение суммы проекций всех сил на оси $X$, $Y$, $Z$:

Необходимым условием равновесия для плоской будет нулевое значение суммы проекций всех сил на оси $X$, $Y$:

Момент силы относительно точки

Абсолютное значение момента в теоретической механике вычисляется формулой: $M_0(\vec)=hF$

При положительном моменте сила вращает плечо $h$ против часовой стрелки, а при отрицательном – по часовой.

Согласно свойствам момента силы относительно точки, он сохраняет свою неизменность, если точка приложения силы переносится вдоль линии ее действия. Еще одно свойство проявляется в том, что момент равнодействующей силы относительно точки определяет сумма моментов слагаемых сил в отношении этой точки:

Момент пары сил

Момент пары сил определяет формула: $M(\vec,\vec)=Fh$где $\vec,\vec) – силы, которые составляют пару, $h$ — плечо пары. — плечо пары.

Момент пары окажется положительным при стремлении сил к вращению плеча против часовой стрелки. Свойства пары сил выражены в: нулевом значении суммы проекций сил на ось; неизменности момента пары при одновременном изменении значения сил и плеча пары, возможности переноса пары в плоскости ее действия при неизменности действия пары на тело.

Момент силы относительно точки будет выражать следующая формула: $M_0(\vec)=hF$. Момент окажется положительным при стремлении силы к вращению плеча против часовой стрелки и отрицательным – когда вращать будет по часовой.

Свойства момента силы в отношении точки выражаются в следующем: его неизменности в момент переноса точки приложения силы вдоль линии ее действия; момент равнодействующей силы в отношении точки представляет суммарное значение моментов слагаемых сил относительно нее: $M_0(\vec)=M_0(\vec)+M_0(\vec)$, где $\vec=\vec+\vec$, нулевом значении момента силы при прохождении линии действия силы через точку ее приложения;

Приложенную к твердому телу силу возможно перенести. При этом будет неизменным оказываемое ею действие, а перенос осуществляется параллельно в другую точку тела. Также при этом добавляется пара сил с моментом, равнозначным переносимой силе относительно точки, куда она переносится. Вследствие вышеуказанного преобразования мы наблюдаем формирование сходящейся системы сил и суммы моментов пар сил. Действие такой системы заменяют действия суммарной силы, а действие моментов — суммарный момент.

Суммарный вектор $\vec$ считается главным вектором системы сил. Суммарный момент $M_0(\vec)$ — основной момент системы сил.

Итогом становится тождественное преобразование произвольной системы сил в главный вектор и момент такой системы. Аналитически главный вектор и момент системы могут определяться их проекциями на оси координат:


источники:

http://skysmart.ru/articles/physics/moment-sily

http://spravochnick.ru/fizika/teoreticheskaya_mehanika/momenty_v_teoreticheskoy_mehanike/