Как составлять уравнения химических реакций оксидов

Урок 32. Химические свойства оксидов

В уроке 32 «Химические свойства оксидов» из курса «Химия для чайников» узнаем о всех химических свойствах кислотных и основных оксидов, рассмотрим с чем они реагируют и что при этом образуется.

Так как химический состав кислотных и основных оксидов различен, они отличаются своими химическими свойствами.

1. Химические свойства кислотных оксидов

а) Взаимодействие с водой
Вы уже знаете, что продукты взаимодействия оксидов с водой называются «гидроксиды»:

Поскольку оксиды, вступающие в эту реакцию, делятся на кислотные и основные, то и образующиеся из них гидроксиды также делятся на кислотные и основные. Таким образом, кислотные оксиды (кроме SiO2) реагируют с водой, образуя кислотные гидроксиды, которые являются кислородсодержащими кислотами:

Каждому кислотному оксиду соответствует кислородсодержащая кислота, относящаяся к кислотным гидроксидам. Несмотря на то что оксид кремния SiO2 с водой не реагирует, ему тоже соответствует кислота H2SiO3, но ее получают другими способами.

б) Взаимодействие с щелочами
Все кислотные оксиды реагируют со щелочами по общей схеме:

В образующейся соли валентность атомов металла такая же, как и в исходной щелочи. Кроме того, в состав соли входит остаток той кислоты, которая соответствует данному кислотному оксиду.

Например, если в реакцию вступает кислотный оксид CO2, которому соответствует кислота H2CO3 (указана в квадратных скобках), то в состав соли будет входить остаток этой кислоты — CO3, валентность которого, как вы уже знаете, равна II:

Если же в реакцию вступает кислотный оксид N2О5, которому соответствует кислота HNO3 (указана в квадратных скобках), то в составе образующейся соли будет остаток этой кислоты — NO3 с валентностью, равной I:

Поскольку все кислотные оксиды реагируют со щелочами с образованием солей и воды, этим оксидам можно дать другое определение.

Кислотными называются оксиды, реагирующие со щелочами с образованием солей и воды.

в) Реакции с основными оксидами

Кислотные оксиды реагируют с основными оксидами с образованием солей в соответствии с общей схемой:

В образующейся соли валентность атомов металла такая же, как и в исходном основном оксиде. Следует запомнить, что в состав соли входит остаток той кислоты, которая соответствует кислотному оксиду, вступающему в реакцию. Например, если в реакцию вступает кислотный оксид SO3, которому соответствует кислота H2SO4 (указана в квадратных скобках), то в состав соли будет входить остаток этой кислоты — SO4, валентность которого равна II:

Если же в реакцию вступает кислотный оксид Р2О5, которому соответствует кислота Н3РО4, то в составе образующейся соли будет остаток этой кислоты — РO4 с валентностью, равной III.

2. Химические свойства основных оксидов

а) Взаимодействие с водой

Вы уже знаете, что в результате взаимодействия основных оксидов с водой образуются основные гидроксиды, которые иначе называются основаниями:

К таким основным оксидам относятся оксиды: Li2O, Na2O, K2O, CaO, BaO.

При написании уравнений соответствующих реакций следует помнить, что валентность атомов металла в образующемся основании равна его валентности в исходном оксиде.

Основные оксиды, образованные такими металлами, как Cu, Fe, Cr, с водой не реагируют. Соответствующие им основания получают другими способами.

б) Взаимодействие с кислотами

Практически все основные оксиды реагируют с кислотами с образованием солей по общей схеме:

Следует помнить, что в образующейся соли валентность атомов металла такая же, как в исходном оксиде, а валентность кислотного остатка такая же, как в исходной кислоте.

Поскольку все основные оксиды реагируют с кислотами с образованием солей и воды, этим оксидам можно дать другое определение.

Основными называются оксиды, реагирующие с кислотами с образованием солей и воды.

в) Взаимодействие с кислотными оксидами

Основные оксиды реагируют с кислотными оксидами с образованием солей в соответствии с общей схемой:

В образующейся соли валентность атомов металла такая же, как и в исходном основном оксиде. Кроме того, следует запомнить, что в состав соли входит остаток той кислоты, которая соответствует кислотному оксиду, вступающему в реакцию. Например, если в реакцию вступает кислотный оксид N2O5, которому соответствует кислота HNO3, то в состав соли будет входить остаток этой кислоты — NO3, валентность которого, как вы уже знаете, равна I.

Поскольку рассмотренные нами кислотные и основные оксиды в результате различных реакций образуют соли, их называют солеобразующими. Существует, однако, небольшая группа оксидов, которые в аналогичных реакциях не образуют солей, поэтому их называют несолеобразующими.

Краткие выводы урока:

  1. Все кислотные оксиды реагируют со щелочами с образованием солей и воды.
  2. Все основные оксиды реагируют с кислотами с образованием солей и воды.
  3. Кислотные и основные оксиды являются солеобразующими. Несолеобразующие оксиды — CO, N2О, NO.
  4. Основания и кислородсодержащие кислоты являются гидроксидами.

Надеюсь урок 32 «Химические свойства оксидов» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Как составить реакции с оксидами (алгоритм)
методическая разработка по химии (8 класс) на тему

Этот алгоритм поможет легко и просто составить уравнения.

Скачать:

ВложениеРазмер
kak_sostavit_reakcii_s_oksidami.doc157 КБ

Предварительный просмотр:

Как составить реакции с оксидами

Реакция 1. Основный оксид + кислотный оксид → соль
Тип реакции – реакция соединения .
Чтобы составить уравнение этой реакции, надо проделать следующие действия:

  1. Определить идёт ли реакция?

Реакция осуществима, если оксид металла образован элементами из IA и II A групп.

  1. Определить по формуле кислотного оксида химическую формулу соответствующей ему кислоты, формулу кислотного остатка и его валентность.
  1. Определить по формуле основного оксида валентность металла.
  1. Составить по валентностям формулу соли.

    Записать уравнение реакции и подобрать в нем коэффициенты.

Пример: Написать уравнение реакции: MgO + N 2 О 5 → .
Действуем по плану:

  1. Складываем (в уме или на черновике) формулы кислотного оксида и воды:
  1. Определяем формулу кислотного остатка NO 3 , валентность I (равна количеству Н в кислоте).
  1. По формуле MgO легко находится валентность магния – II.
  2. Составляем формулу соли: Mg(NO 3 ) 2
  3. Записываем, уравнение реакции и подбираем в нем коэффициенты:
    MgO + N 2 O 5 → Mg(NО 3 ) 2

Реакция 2. основный оксид + кислота → соль + вода
Тип реакции — реакция обмена .
Составить уравнение этой реакции проще, чем уравнение реакции 1, потому что формула кислоты нам уже известна; зная ее, просто получить и формулу кислотного остатка, и его валентность.
Дальше поступаем так же, как и в предыдущем примере. При составлении уравнения реакции не забудем, что выделяется вода!

Пример: Составьте уравнение реакции между оксидом алюминия и хлороводородной кислотой.

  1. Вспомним формулу хлороводородной кислоты — НСl, её остаток Сl (хлорид) имеет валентность I.
  2. По периодической системе Д.И. Менделеева установим, что валентность алюминия III и формула его оксида Аl 2 Оз.
  3. Составим формулу продукта реакции — соли (хлорида алюминия): АlСlз.
  4. Запишем уравнение реакции и подберем в нем коэффициенты:

Аl 2 Оз + 6HCl → АlСlз + 3H 2 O

Реакция 3. Кислотный оксид + основание → соль + вода
Тип реакции — реакция обмена .
Для составления уравнения такой реакции следует выполнить действия:

  1. По формуле кислотного оксида определить формулу его кислоты, формулу кислотного остатка и его валентность (точно так же, как и при составлении реакции 1).
  2. По формуле гидроксида найти валентность металла: это просто, ведь она равна числу гидроксогрупп (ОН). Если формула гидроксида неизвестна, ее придется составить, используя таблицу растворимости.
  3. Дальше поступаем, как и в предыдущих примерах: надо составить формулу соли, записать уравнение реакции (не забыть про воду!) и подобрать коэффициенты.

Пример: Составьте уравнение реакции, происходящей при пропускании углекислого газа через известковую воду.

  1. Вспомним, что углекислый газ — это оксид углерода (IV) СО 2 , а известковой водой называется водный раствор гидроксида кальция Са(ОН) 2 .
  2. Определим, что оксиду углерода (IV) соответствует угольная кислота Н 2 СО з ; ее кислотный остаток СОз (карбонат) имеет валентность II.
  3. Не представляет труда вывести формулу продукта реакции — карбоната кальция СаСОз.
  4. Осталось составить уравнение реакции: СаО + СО 2 → СаСОз.

Реакция 4. Основный оксид + вода → основание

Тип реакции — реакция соединения .

Определить идёт ли реакция?

Реакция осуществима, если оксид металла образован элементами из IA и II A групп.

Составить уравнение этой реакции не составит труда, если вы умеете составлять формулы оснований и оксидов.

Пример: Написать уравнение реакции: Н 2 O + Na 2 O → .

Н 2 O + Na 2 O → 2NaOH

Реакция 5. Кислотный оксид + вода → кислота

Тип реакции — реакция соединения .

Определить идёт ли реакция?
Реагируют все оксиды, кроме оксида кремния SiO 2 .

Составление уравнения этой реакции: п о формуле кислотного оксида определить формулу его кислоты, точно так же, как и при составлении реакции 1).

Пример: Написать уравнение реакции: Н 2 O + N 2 О 5 → .

По теме: методические разработки, презентации и конспекты

Как выполнить задание вида «составить уравнения возможных реакций» (на примере темы «Свойства оксидов», 8 класс)

Предлагаемая презентация с анимационными эффектами и подсказками может помочь восьмикласснику научиться выполнять задания данного вида при изучении темы «Свойства оксидов». Предназначена для.

Как выполнить задание вида «Составить уравнения возможных реакций (на примере темы «Химические свойства оснований»)

Предлагаемая презентация с помощью анимационных эффектров и «подсказок» поможет восьмиклассникам закрепить умение выполнять задания данного вида при изучении темы «Химические свойства оснований». През.

Тема урока: «Классификация химических реакций. Реакции, идущие без изменения и с изменением состава вещества» в 11 классе.

Цели:Образовательная: продолжить формирование у учащихся понятия о классификации химических реакций в органической и неорганической химии.Развивающая: развитие аналитического и синтетического мышления.

Технологическая карта урока по химии « Типы химических реакций по числу и составу исходных и полученных веществ.»

Технологическая карта урока по химии « Типы химических реакций по числу и составу исходных и полученных веществ.&raquo.

Классификация химических реакций (по числу и составу исходных и полученных веществ) (урок изучения и первичного закрепления новых знаний и умений)

Создание условий для репродуктивного усвоения материала, умения сравнивать и анализировать.Организовать деятельность учащихся по изучению классификации химических реакций по количеству исх.

Определение состава смеси, в которой одно из исходных веществ, вступает в реакцию с соответствующим реагентом.

Алгоритм решения задач для обучающихся.

Урок «Классификация химических реакций по числу и составу исходных и полученных веществ»

План урока «Классификация химических реакций» содержит цели и задачи изучаемого материала. Описаны основные этапы и методы учебного процесса.

Химические свойства основных оксидов

Химические свойства основных оксидов

Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочиОсновные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидамиРеагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3 (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:

Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO

Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2

4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):


источники:

http://nsportal.ru/shkola/khimiya/library/2013/02/14/kak-sostavit-reaktsii-s-oksidami-algoritm

http://chemege.ru/basicoxides/