Как сравнить уравнение с нулем

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Уравнения равные нулю

Что такое «уравнения равные нулю»?

Если в левой части уравнения стоит сумма или разность одночленов или многочленов, а в правой части — нуль, то это может быть обычное линейное уравнение.

Если левая часть уравнения представляет собой произведения двух или нескольких множителей, а правая часть — нуль, то это — уравнение типа «произведение равно нулю».

В общем виде простейшие равные нулю уравнения можно записать как

(множителей может быть больше).

Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому приравниваем к нулю каждый множитель:

и решаем каждое из полученных уравнений отдельно.

Это — уравнение типа «произведение равно нулю».

Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

Если в уравнении, равном 0, левую часть можно разложить на множители, то такое уравнение также можно решить как уравнение типа «произведение равно 0».

Сгруппируем первое слагаемое с третьим, а четвёртое — со вторым:

Из первых скобок вынесем за скобки общий множитель x², из вторых — 4:

Общий множитель (x-3) вынесем за скобки:

Получили уравнение типа «произведение равно 0». Приравниваем к нулю каждый из множителей:

Корень первого уравнения —

Второе уравнение не имеет корней (сумма положительных чисел не может равняться нулю).

В алгебре многие уравнения сводятся к уравнениям типа «произведение равно нулю» с помощью разложения на множители.

Множители могут линейными, квадратными, логарифмическими, тригонометрическими и т.д. уравнениями.

Еще один важный частный случай уравнений, равных нулю, рассмотрим позже.

13 комментариев

Показательное уравнение:
3^((x+2)/(3x-4))-2*3^((5x-10)/(3x-4))-7=0
Корень известен: x=2.
Подскажите, пожалуйста, как найти решение. Преобразовать в квадратное уравнение что-то не получается.

Делить на ноль — это норма. Часть 2

В прошлой части мы расширяли алгебру и смогли делить на ноль арифметически. В качестве бонуса, способ оказался не единственным. Однако, все эти алгебры не дали ответа на вопрос: “Что там внутри или почему нам это не показывают?”

Пока древние вязали узелки, такой вопрос возникнуть не мог. Сейчас, куда не глянь, “бла-бла, для а≠0”. Значит ответ затаился где-то между узелками и настоящим. В математике все строго и последовательно, а значит и ответ не мог потеряться.

Мы попробуем приблизиться к ответу настолько близко насколько это возможно. Эта часть практически полностью посвящена философии арифметики. Скорее всего часть материала будет для Вас тривиальной. Однако у нас тут не повтор школьного курса арифметики.

Материал построен так, чтобы выделить структуру арифметики. Мы будем вгрызаться в нее с разных сторон и отрывать слои. Цель — понять, что на чем лежит.

2. Истина где-то рядом

2.1 Зачем вообще напрягаться?

Чтобы снова броситься в дебри, хотелось бы понять, почему этот вопрос периодически возникает и ради чего стоит искать ответ.

Давайте вспомним школьные годы, то время, когда нам впервые сказали: “На ноль делить нельзя, — вот так вот категорично. — Нельзя и все!”. А ведь до того в математике все было логично и последовательно. Складывали арбузы и вычитали дыни, яблоки перекатывали. Откуда не возьмись, на самом старте изучения математики, появился первый запретный плод.

  • «Нельзя и все!» или «Проверь на калькуляторе» — без комментариев. Особая педагогическая методика.

«Яблоко можно разделить на двоих. Тебя и друга Колю. Можно на троих. А если на ноль человек делить, то сколько раз разрезать нужно?» — да, непонятно выходит. Да и вопросом на вопрос отвечать неприлично. А учитель-то для чего? Твердят что математика “красивая”, математика “царица”, а тут такой конфуз.

“2∙0=0 и 3∙0=0, поделим оба равенства на ноль, то выходит что 2=0/0 и 3=0/0. Значит 2=3 что ли?” — пример, конечно, наглядный. Но такие примеры мало того что на вопрос ответа не дают, так еще и страх перед наукой сеют. А вдруг еще на что делить нельзя или умножать. А вдруг поскользнусь. А может учитель сам не разобрался?

  • «Чтобы понять нужно много знаний. Это в ВУЗе изучают, и то не все» — ну да, а че делить то нельзя? До этого момента у нас причинно-следственные связи не нарушались, шли от простого к сложному. А ведь ноль — число как число. Деление — операция как операция. Запрет на ровном месте!
  • Но система образования не щадит никого (пруф). Нет другого выхода, кроме как идти дальше и осваивать новые знания. В голове происходит “скачок знаний”, как будто тысячелетие эволюции математики было пропущено. И это только начало.

    «… не нужно проявлять лишней поспешности, нужно дать время ученику освоиться с тем внутренним переворотом, который в нем совершается в результате акта познания”, — Ф. Клейн, “Элементарная математика с точки зрения высшей”

    В старших классах, откуда ни возьмись, появляются формулы окружности и треугольников, дискриминант, тригонометрические тождества и т.п. Что их объединяет? Все они пришли сверху, совершенно неизвестно откуда. Их нужно просто использовать, в худшем случае зазубрить.

    Оказавшись в ВУЗе, большинство, вместо возвращения к пропущенному материалу, изучает «вышку» с уклоном в специальность. Объем формул, пришедших свыше, уже совершенно не смущает.

    Да, систему образования понять можно. Специалисту платят за результат, а не за то что он знает откуда экспонента в его расчетах.

    В итоге мы не приходим к выводам, так как это делают математики. В момент “скачка знаний”, то есть когда мы отбрасываем часть логических цепочек, вершится таинство. Мы принимаем на веру то что нам говорят. Учебник превращается в священное писание!

    Запрет деления на ноль — это первый и самый навязчивый запрет математики. Поэтому он запоминается на всю жизнь. Это так же педагогическая проблема, которая оставляет отпечаток на всю математику, как на “тайну покрытую мраком”. Это сложная проблема, по сравнению с ней найти большинство пропущенных логических цепочек не составляет труда.

    Превратить священное писание назад в учебник можно. Причина запрета должна стать строго определенной. Задача педагогов преподнести ее ясно. Наука не должна сеять сомнения.

    2.2 Что такое деление?

    Деле́ние (операция деления) — одно из четырёх простейших арифметических действий, обратное умножению. Деление — это такая операция, которая считает сколько раз одно содержится в другом.

    Что из этого следует:

      Деление не самостоятельная операция. Она определяется через умножение. Если посмотреть на определение умножения, то оно определяется через сложение. Вычитание так же определено через сложение. Сложение самостоятельно и ни от кого не зависит.

    В определении нет упоминания о нуле. При повсеместном запрете деления на ноль это весьма странно. Кстати, упоминания нуля нет и в определениях остальных арифметических операций.

  • Вторая часть определения не является частью определения, это всего лишь пояснение. Убедиться можно сравнив с аналогами в других проверенных источниках.
  • Похоже, самое полезное, что мы здесь нашли — это связь между операциями. Можно сказать что деление — вино третьего отжима, умножение и вычитание — второго, а сложение — первого. Возможно, именно по этой причине деление стало давать сбой при работе с нулем.

    2.3 Порождающие операции

    Итак, только операция сложения содержит правило о том, как по двум исходным аргументам (слагаемым) определить результат операции (сумму). Все остальные арифметические операции используют данное правило (соответствие чисел), но вдобавок накладывают свои “дополнительные условия”.

    В зависимости от “дополнительных условий” арифметические операции можно поделить на прямые и обратные:

      Прямые операции: это сложение, умножение и возведение в степень. Выражая эти операции через сложение, все слагаемые остаются известны. Определение результата любой из операций не представляет сложностей.

    Обратные операции: вычитание, деление, взятие корня (логарифмирование). Данные операции берут за основу соответствующую прямую операцию и “инвертируют” ее. Таким образом, выражая операцию через сложение, хотя бы одно из слагаемых оказывается неизвестно. Это слагаемое и есть результат операции. Сумма, как правило, известна.

    Определение результата операции, в общем случае, задача не тривиальная.

    Все прямые операции обладают одним свойством. Они являются замкнутыми. То есть тип результата полностью определяется типами входных чисел (невозможно получить из произведения двух целых чисел дробный результат).

    Обратные операции являются замкнутыми только частично (значение корня из целого числа может оказаться целым числом, а может и не оказаться). В тех случаях, где подобрать результат не удается операция оказывается не определена. Данную проблему издавна решают простым способом: рассматривают получившуюся запись операции и числа как новый тип чисел: .

    Таким образом, можно сказать что обратные операции и “порождают” новые типы чисел.

    В общем случае использование термина “обратная операция” неприемлемо для обозначения способности операции порождать новые типы чисел. Например, “дополнительными условиями” можно:

    • поместить результат операции в одно или несколько слагаемых (как показано на примере выше);
    • определить результат операции как ответ на вопрос, сколько слагаемых участвовало в операции (дробные числа, иррациональные числа использующие корень);
    • определить результат операции как сумму бесконечного количества слагаемых. При этом все слагаемые известны (число Пи и число Эйлера).

    Деление одна из порождающих операций. Возможно, в процессе рождения что-то пошло не так и новорожденный получил травму. Для того чтобы ответить на это вопрос нужно понять откуда взялось деление и откуда взялся ноль.

    2.4 Эволюция арифметики

    Попробуем структурировать наше представление об арифметических операциях и порождаемых ими типах чисел. Для наглядности представим один из вариантов, как может идти эволюция арифметики.

    2.4.1 Область определения

    Мы в пещере. С умением считать никто не родился. Однако в процессе “созерцания” появилось понимание, что такое понятие “количество”. То есть мы знаем что два мамонта и два яблока имеют нечто общее и можем это выразить, загибая пальцы. Соответственно ничего, кроме натуральных чисел на этом этапе мы не знаем.

    Множество натуральных чисел помечено звездочкой “*” для однозначности. Здесь и далее подчеркивается отсутствие понятия “ноль”.

    Есть несколько формальных определений последовательности натуральных чисел. Мы возьмем за основу аксиомы Пеано. Примечательно что эти определения не были описаны древними. Они появились только в 19 веке, а после прошли процедуру уточнения (в первоначальном варианте их было девять, в современном виде уже пять).

    Рассмотрим формальные определения и их суть в рамках нашей задачи (традиционное словесное описание можно найти на Википедии):


      Есть число “один” и оно натурально.


    Вводится функция следования S(x). Для всех натуральных аргументов она возвращает следующее за ним натуральное число. В первом приближении (весьма грубом) это S(x)=x+1, например 2=S(1) и 3=S(S(1)).


    Вводится явный запрет на глобальную закольцованность порождаемой последовательности чисел. Генерируя числа мы не можем получить элемент с которого начали генерацию, то есть единицу.


    Разные аргументы функции следования должны давать разные результаты. Таким образом вводится явный запрет на локальную закольцованность. То есть функция следования не должна повторно сгенерировать число, которое уже было сгенерировано.


    Математическая индукция, позволяющая подняться с уровня элементов последовательности до уровня последовательности в целом. Если какое-то высказывание “P” верно для единицы и для каждой пары соседних элементов, то оно верно и для всех элементов последовательности.

    Например. Для чисел 2 и 3, верно что между ними есть один средний элемент 2.5, для 3 и 4 это 3.5 и т.д. Делаем вывод, между любыми соседними натуральными числами есть средний элемент и он единственный.

    Какой вывод можно сделать из этих аксиом? Вводится запрет на закольцованность в любом виде (глобальную или локальную). Запрет на закольцованность всегда требует наличие следующего элемента. Так появляется математическое понятие “бесконечность” основанное на понятии «количество”. Понятие “бесконечность” не может существовать без понятия „количество”.

    Довольно часто за “стартовый элемент” в аксиомах Пиано берут ноль. Почему так делать нельзя, будет раскрыто при описании операции “вычитание” (уже совсем скоро).

    Функция следования не использует операцию сложения в прямом смысле этого слова. Это фундаментальная функция, которая используется как для построения множества натуральных чисел, так и для формального определения операции сложения.

    То есть и числа и арифметические операции определены при помощи функции следования.

    Функция следования входит в класс примитивно рекурсивных функций, рассматриваемых в теории алгоритмов. Как известно, понятие рекурсия не содержит требования ее конечности (достижимости терминальных ветвей), а значит она так же неявно определяет понятие “бесконечность”.

    2.4.2 Сложение

    Первая операция, возникшая в ходе нашей эволюции. Как целые пальцы не загибай, результат будет целым. Разве что у вождя сумма пальцев может быть чуть больше чем у всех остальных. Если пальцев не хватает, всегда можно позвать научного ассистента по пещере и расширить разрядную сетку.

    2.4.2 Вычитание

    В четверг охотники подстрелили 12 мамонтов. За пятницу съели 5 штук. Сколько мамонтов осталось?

    Задача хорошо решается путем введения разгибания пальцев. Но подход работает не всегда. Например, чтобы оценить запасы на выходные охотник загибает семь пальцев за остаток, разгибает пять пальцев за субботу (норма расхода в день) и “пытается” разжать за воскресенье.

    В этот момент между “try” и “catch” возникает ArithmeticException. Результат оказывается не определен. Наша операция определена только для случая, когда уменьшаемое больше вычитаемого.

    Однако определение вычитания не накладывает никаких ограничений. Чтобы избавиться от требования “a > b” введем “правило перестановки”. То есть позволим менять местами уменьшаемое и вычитаемое. Но чтобы тождество оставалось верным результат нужно пометить каким-то маркером, например знаком “минус”. Всякие маркеры для математики — дело обычное (например, признак отсутствия нуля у ).

    За счет вспомогательной операции “перестановки” мы подошли к первой абстракции — “отрицательные числа”. Пометка в виде знака “минус” у натурального числа есть ничто иное как признак отложенного вычитания (но это только пока).

    У нас остался всего один не определенный случай, когда уменьшаемое и вычитаемое равны. Если мы захотим определить его, то нам придется ответить на вопрос что такое понятие “ничто”. Хотя к чему все эти сложности, обозначим “ничто” символом “0” (позже вникнем по полной).

    Осталось зафиксировать наше решение в виде “правил сложения/вычитания нуля”. Они следуют из определения нуля после пары нехитрых перестановок:

    Посмотрим, насколько хорошо работают введенные правила. Решая уравнения, мы по двум известным числам всегда можем найти неизвестное третье. Совершенно неважно в какой части уравнения оно стоит, решение всегда однозначно.

    Отрицательные числа появились в результате перестановки, ноль же заполнил “ничто”. Отрицательные числа и ноль рождены разными способами. Далее мы будем рассматривать две ветви эволюции: отдельно всех чисел без нуля и отдельно ноль.

    2.4.3 Умножение

    Умножение по определению является сокращенной записью сложения. Умножая натуральные числа, результат может быть только натуральным. На этом этапе эволюции для нас польза от определения заканчивается.

    Для отрицательных чисел в определении нет ни слова о том как их перемножать. Эти правила сформировались постепенно в ходе решения прикладных задач. В современной трактовке они известны как дополнение к умножению в виде “правил знаков”. Они определены настолько хорошо, что применяя их к целым не нулевым числам, операция остается замкнутой.

    В случае нуля ситуация отличается кардинально. Вводится еще одно правило “правило умножения нуля“ (умножение любого числа на ноль дает ноль). Но новым это правило только кажется. Ввести какое либо иное правило мы не можем. Определение умножения жестко связывает нас со сложением. Раскрывая умножение через сложение, мы используем “правила сложения/вычитания нуля”, соответственно ничего кроме нуля мы получить не можем.

    Если сравнить операции сложения и умножения в арифметике и общей алгебре, то можно заметить одно серьезное различие. В арифметике данные операции связаны по определению. Дистрибутивный закон является следствием этих определений. В общей алгебре наоборот, операции описываются независимо друг от друга, а уже в определении поля (кольца, если говорить точнее) связываются дистрибутивным законом. Как следствие:

    • В определении поля есть требование к обратному элементу. При этом для умножения и для сложения требование описано не симметрично. Допускается отсутствие обратного элемента по умножению для нейтральных элементов по сложению, но не наоборот.
    • Для придания симметрии при описании колес пришлось отказаться от привычного дистрибутивного закона, а значит и от оперирования полем.

    Поле, венец универсальности, “за уши” притянуто к элементарной арифметике. Но чтобы избавиться от этой подпорки (описать требования к операциям симметрично) придется расширить определение дистрибутивного закона (начиная с кольца конечно). Есть основания полагать, что венцом универсальности может стать другая алгебраическая система, для которой поле окажется частным случаем.

    2.4.4 Деление

    Деление — операция обратная умножению. В уравнениях с положительными и отрицательными числами появляется возможность подстановки не кратных чисел.

    Как следствие операция порождает “рациональные числа”.

    Чтобы вписать их в арифметику, в комплекте идут “правила действий с обыкновенными дробями”. К счастью, эти правила гармонично сосуществуют с введенными нами ранее “правилами знаков”. В итоге в уравнениях сохраняется возможность определить по двум известным числам неизвестное при любой расстановке.

    В случае нуля его можно умножать на рациональные числа. На этом всё, гармония закончилась! Только для двух из трех видов уравнений с произвольными числами решение может быть найдено.

    Во-первых, появилась возможность составить уравнение с настолько не удобными числами, что мы не сможем подобрать ни одного решения. Решение “не возможно”.

    Во-вторых, появилась возможность составить уравнение в котором есть бесконечное множество решений. Выбрать какое-то одно из них так же невозможно. Решение “не однозначно”.

    Несложно догадаться, корень проблемы деления на ноль лежит в “невозможности” и “неоднозначности” умножения нуля. Умножение, в свою очередь, ретранслирует “правила сложения/вычитания нуля”. По сути можно задать уравнения, обладающие такими же свойствами, используя только сложение.

    В обоих уравнениях нужно определить количество нулей, которые нужно сложить чтобы получить произвольное число или ноль.
    Деление не привнесло чего-то качественно нового. Произошла трансформация “невозможности” и “неоднозначности” сложения в конкретные сущности, в неопределенности вида 1/0 и 0/0 соответственно.

    Получается что деление, как первый подозреваемый, не виновато в том что на ноль делить нельзя.

    Пока не существует понятия “ноль” все операции, включая возведение в степень и взятие корня (логарифмирование), хорошо замкнуты (уже правда на комплексных числах) и арифметика работает великолепно. Но есть одно “но”, при такой конфигурации арифметики операция вычитания, оказывается определена не полностью.

    После введения нуля сложение и вычитание неплохо работает. Для остальных операций он скорее повод для установки костылей (), нежели равноправное число.

    2.5 Что такое ноль?

    Итак, раз операция деления оказалась не виновата в запрете деления на ноль. Попробуем тогда собрать воедино все, что мы знаем о нуле:

      Потребность в нуле появилась при определении операции вычитания.

    Для разрешения большей части неопределенностей вычитания было введено “правило перестановки”. Знак минус перед числом, по сути, является маркером “отложенного вычитания”. Все что “правило перестановки” не осилило, закрыл собой ноль. По сути, ноль был введен для обозначения понятия “ничто”.
    В предыдущей части статьи (при проективном расширении числовой прямой) мы “с потолка” ввели беззнаковую бесконечность. Ноль, аналогичная “затычка” для всего, что нам не понятно. Последствия, в виде появления новых неопределенностей, оказываются весьма предсказуемы.

    У понятия “ничто”, отсутствует связь с понятием “количество” (основа для определения натуральных чисел и сложения). Эти понятия существуют сами по себе и мы можем “созерцать” их совершенно независимо, например “пять яблок” и “вакуум”. Отсюда следует, что в своей сути ноль так же не связан с натуральными числами, как понятие “ничто” не связанно с понятием “количество”. Вычитание использует данное понятие, но не порождает его.

    Отсутствие породившей операции качественно отличает ноль от всех остальных чисел.

    Для того, чтобы была ясна связь не рассмотренных нами типов чисел с операциями, продолжим, максимально кратко, тему эволюции. Мы остановились на делении. Комплексные числа и часть иррациональных порождаются операцией взятия корня (логарифмированием) над отрицательным числом. Прочие иррациональные (число Пи и число Эйлера) появляются за счет введения бесконечных сумм и бесконечных умножений. Мнимые единицы кватернионов даны по определению и не выведены арифметически. Соответственно, инородны в рамках эволюции чисел.

    Вероятно именно из-за возможности одновременного “созерцания” понятия “ничто” и понятия “количество” ноль иногда приписывают к натуральным числам. Однако гораздо более логичным видится вынесение нуля как минимум в отдельный тип чисел.

    Было принято, что ноль единый и абсолютный. Именно из этого, весьма спорного, предположения следуют “правила сложения/вычитания нуля” с другими числами. Как следствие, ноль обладает уникальным свойством, которое отсутствует у всех остальных чисел. В результате сложения нуля с произвольным числом неизвестно, сколько нулей участвовало в операции и были ли они вообще.

    На последнем пункте стоит остановиться поподробнее. Попробуем представить не абсолютный ноль.

    Допустим, у нас есть мамонт. Для его перевозки нужна тара. Если положить мамонта в тару, а потом вытащить, то в таре окажется “ничто” (прям как на картинке со спичкой выше). Однако тара для двух мамонтов несколько отличается от тары для одного. В случае кражи есть основание выставлять обвинение в соответствии с размером оставшейся тары. А значит, существуют ситуации когда одно “ничто” другому “ничто” рознь.

    Может ли “ничто” быть разным или “ничто” есть единая и абсолютная сущность? Это вопрос на который невозможно дать ответ. Аналогичен и бессмысленен спор на тему есть ли Бог, а и есть то единый он или их много. Ответа на этом свете мы не узнаем.

    Отношение математики к нулю как к единому и абсолютному объекту лучше описать по отдельным разделам математики:

      Общая алгебра. В алгебраических системах с разрешенным делением на ноль, очень ярко проявляется борьба с абсолютным нулем. Причудливые операции вычитания это не прихоть, а следствие уничтожения единого и абсолютного нуля. Например, в колесах для вычитания определено следующее тождество:

  • Математическая логика. Формально арифметика определяется расширением аксиом Пеано. Пять аксиом, определяющие ряд натуральных чисел, дополняются еще четырьмя. Это расширение определяет связь базовых арифметических операций (сложение и умножение) с числами:

    В этих аксиомах заложено особое отношение к нулю. Формально определяется объект со свойствами отличными от всех остальных чисел. Этому объекту посвящено две из девяти аксиом описывающих всю арифметику.
    Здесь мы прикасаемся к одному из проявлений теоремы Гёделя о неполноте. Невозможно средствами арифметики доказать или опровергнуть единую или множественную сущность нуля.

  • Теория алгоритмов. Можно заглянуть в арифметику еще глубже. Для построения последовательности натуральных чисел и определения операции сложения, используется класс примитивно рекурсивных функций. Функция следования S(x), используемся в аксиомах Пеано, одна из них. Наравне с ней определена Нулевая функция O(x), функция которая всегда возвращает ноль.
  • Таким образом, на самом дне арифметики, там где не существует ни натуральных чисел, ни сложения (а значит и прочих операций), существует ноль.

    Хорошо, ответа на вопрос сколько должно быть нулей арифметика дать не может. Мы пользуемся одним нулем. В колесах, рассмотренных в первой части, использовалась арифметика с бесконечным количеством нулей. А может ли быть конечное число нулей, но больше одного.

    Может и такие арифметики успешно используются. Один из ярких примеров арифметика со “знаковым нулем”, реализованная в JavaScript.

    Знаковый ноль, хоть записывается аналогично +0 и -0, не имеет ничего общего с исчислением бесконечно малых.

    Введение знакового нуля является еще одним вариантом расширения числовой прямой. В общей топологии существует очень близкое (но не тождественное) пространство “линия с двумя началами” (не хаусдорфово).

    Однако и эта арифметика грешит неопределенностями.

    Можно сделать вывод, что неопределенности в арифметике будут сохраняться до тех пор, пока количество нулей конечно.

    По большому счету неважно как мы будем относиться к нулю. Нужен ли нам единый и абсолютный ноль, а может парочка или вообще бесконечное количество, арифметика всегда сможет под нас подстроиться.

    2.6 Бесконечность наше всё

    Напоследок, хотелось бы представить хотя бы один вариант числовой оси содержащей бесконечное количество нулей (данный пример описывает концепцию и не претендует на математическую строгость).

    Для вычитания, когда уменьшаемое и вычитаемое равны, вместо ввода нуля определим операцию “сокращения”. То есть разрешаем вычеркивать эквивалентные выражения с противоположным знаком. Но если мы сократили все, то результат уже не пригоден к дальнейшему использованию.

    Отсчет в числовой оси начнем с единицы (от первого числа зародившего понятие “количество”). Для генерации остальных чисел воспользуемся бесконечной последовательностью, определенной функцией следования (она же использована в аксиомах Пеано). Это будет наш эталонный генератор бесконечной последовательности.

    Чтобы получить очень маленькое число при помощи функции следования нужно затратить столько же сил сколько и на генерацию очень большого. Используем функции f(x)=1/x и f(x)=x. Приводить в десятичный вид рациональную дробь задача не стоит, соответственно вычислительная сложность функций одинакова.

    Так как ни “абсолютный ноль“ (отмечен символом ноль), ни »потенциальная бесконечность» (отмечена символом беззнаковой бесконечности) недостижимы, ось растет из единицы бесконечно в обоих направлениях (масштаб неравномерный).

    При определении вычитания определено “правило перестановки”. Мы же, в свою очередь, делаем копию нашей прямой и отображаем ее зеркально. Числа-близнецы и недостижимые для них пределы помечаем знаком “минус”. Положительная прямая, не соединена с отрицательной. Переход из одной прямой в другую выполняется только за счет “правила перестановки”.

    Для наглядности изобразим полученную числовую прямую в виде круга. Так же, как мы делали при проективном расширении. Однако, предельные значения не смыкаем (компактификацию не выполняем). Данная трансформация смысловой нагрузки не несет и выполнена только для улучшения восприятия.

    Теперь мы готовы к самому главному. Выполним переход от единой потенциальной бесконечности к бесконечному множеству актуальных бесконечностей (аналогичный подход используется в нестандартном анализе).

    Будем относится к бесконечно большим величинам как к полноправным числам. За эталонную актуальную бесконечность возьмем “скорость” с которой функция следования достигает любого произвольного числа. Обозначим это число . Не стоит его путать с потенциальной бесконечностью , она все так же недостижима.

    Для получения различных актуальных бесконечностей будем использовать понятие предела функции при стремлении к числу . Мы не будем отбрасывать бесконечно малые (низшего порядка) и не будем поглощать константы бесконечно большими величинами, как это принято в классическом анализе. Мы будем сохранять всю информацию, составляющую число. Соответственно, у нас появляется возможность сравнения бесконечно больших чисел.

    Возводя число в отрицательные степени, мы получаем бесконечно малые числа. По сути это и есть наше бесконечное множество нулей, которые можно сравнить между собой и использовать в арифметике (в отличие от бесконечно малой величины в классическом анализе).

    С точки зрения общей алгебры, наша алгебраическая система, не является полем, так как отсутствует ноль (нейтральный элемент). Нестандартный анализ оперирует аналогичными актуальными бесконечностями, они называются гиперреальными числами. Ноль (нейтральный элемент) является одним из гиперреальных чисел. Соответственно алгебраическая система нестандартного анализа оперирует полем.

    Наша эталонная бесконечность представляет собой одно из чисел нестандартного анализа. Однако, вместо упрощенного понятия “скорость”, в нестандартном анализе числами являются классы эквивалентности бесконечных последовательностей. Так как в нашем концепте все алгебраические операции можно выразить через функцию следования, значит любую актуальную бесконечность, образованную арифметически, можно выразить через .

    По факту пределы практически перестают упрощаться, в том виде к которому мы привыкли. Сейчас мы просто производим замену переменной на . Правило Лопиталя так же не применимо. В первой части было показано как в классике, при определении производной, отбрасывается бесконечно малая величина. Однако стоит отметить, понятие предела в нестандартном анализе все же существует, но определено несколько шире.

    Если возникнет практическая необходимость, можно определить операцию вычитания и для равных чисел (вместо “сокращения” определенного нами выше). Например, это может быть число низшего порядка, нежели исходные числа (аналог уравнения из колеса). Арифметика окажется замкнутой. Но нужно отдавать себе отчет, что сумма двух двоек тут же окажется равной четырем с хвостиком. Это чем-то похоже на сложение скоростей в теории относительности. Еще один пример, термодинамика и понятие абсолютного нуля температуры. Остановив молекулы, атомы продолжают движение. Остановив атомы, кварки все еще двигаются и т.д. Погружение бесконечно.

    Эпилог

    Мы находимся между прошлым и будущим, между микро и макро миром. Во всех областях рано или поздно мы находим предел за который мы не сможем зайти и это нормально.

    В математике все не так. Нам говорят что ноль — это число. Затем ставят его в один ряд со всеми остальными числами. Затем нам говорят, длина пути от минус единицы до единицы равна двум. И в этот момент наше сознание окончательно растворяет ноль среди остальных чисел.

    Мы не можем делить на ноль, потому что забыли что однажды смешали понятие “ничто” и понятие “количество”.


    источники:

    http://www.algebraclass.ru/uravneniya-ravnye-nulyu/

    http://habr.com/ru/post/249431/